IDENTIFICATION AND CATEGORIZATION OF ACCIDENTS AND INJURIES IN CABS OF LOCOMOTIVES

SEPTEMBER 1972

PREPARED FOR

DEPARTMENT OF TRANSPORTATION

FEDERAL RAILROAD ADMINISTRATION WASHINGTON, D.C.

-

| 1. Report No. FRA-OPP-73-3 | $\mathrm{PB}-214129$
 \||||||||||||||||||||||| |
| :---: | :---: |
| 4. Title and Subtitle
 Identification and Categorization of Accidents and Injuries in Cabs of Locomotives | 5. Repori Dote September 1972
 6. Performing Organization Code |
| 7. Author's)
 Frank Kurz | 8. Performing Organization Report No. |
| 9. Perlorming Organization Name ond Address
 Central Technology, Inc. Silver Spring, Maryland | 10. Work Unit No. |
| | 11. Contract or Grant No. |
| | 13. Type of Report and Period Covered
 Summary Report
 1961 to Present |
| 12. Spansoring Agency Name and Address
 Federal Railroad Administration 4007 th Street SW.
 Washington, D. C. 20591 | |
| | 14. Spensoring Agency Code |

15. Supplementary Notes

16. Abstract

A review and categorization is made of available published locomotive cab accident reports and statistics, as well as of unpublished accident reports from a number of individual railroads. Major hazards related to locomotive control compartment accidents are identified and categorized in summation form.

Conclusions stress the need for designing greater elemental safety in strength and location of the control compartment, as well as providing a more livable environment for occupants in the control compartment of locomotives. A recommendation is directed to the Federal Railroad Administration, Locomotive Cab Committee, that they proceed with their plans for a series of locomotive impact tests in a continuing effort to improve safety in the control compartment of locomotives.

The contents of this report reflect the views of Central Technology, Inc., which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.
17. Key Words

Human Factors
Human Engineering
Locomotive Accidents
13. Distribution Statement Availability is unlimited. Document may be purchased from the National Technical Information Service, Springfield, Virginia 2215l, for $\$ 3.00$ a copy.
19. Security C!assif. (ot inis report)

$$
\mathrm{N} O T \mathrm{I}
$$

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THATCERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING \mathbb{R} LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

ACKYOWLEDGMENTS

The findings contained in this report are fundamentally the responsibility of Central Technology, Inc. (CENTEC). However, they are the result of efforts expended by a number of people, including the initial guidance provided by staff members of the Office of Safety, Federal Railroad Administration, and other offices of the FRA.

Gratitude is due to all. However, the author of this report desires to specifically cite the FRA Locomotive Cab Committee for their full cooperation and assistance in this investigation. This committee is composed of FRA staff and representatives of the Association of American Railroads, the Brotherhood of Locomotive Engineers and the United Transportation Union.

The author also wishes to thank the executive officers of the following four railroads whose gracious reception and aid in this study were invaluable:

Southern Pacific Transportation Company Burlington Northern, Inc. Louisville and Nashville Railroad Company Southern Railway Company

Gratitude is also due to the representatives of locomotive builders.

Frank Kurz, Special Consultant Central Technology, Inc.
Silver Spring, Maryland

CONTENTIS
Page
INTRODUCTION 1
SUMMARY OF FINDINGS 3
COMMENTS ON EXHIBITS 5
Exhibit A - Statistical Summary 5
Exhibit B - Head-End Collisions 5
Exhibit C - Rear-End Collisions 6
Exhibit D - Derailments/Side Collisions 7
Exhibit E - Derailments 7
Exhibit F - Train - Truck Collisions 7
Exhibit G - Selected Data From Train Service Accidents. 7
Exhibit H - Train Accidents - Hard Couplings, Rough Track and Slack Action 8
Exhibit I - Injuries From Cab Doors And Latches 9
Exhibit J - Injuries From Cab Seats, Arm AndBack Rests9
Exhibit K - Injuries From Cab Windows 9
Exhibit L - Injuries From Striking Appurtenances in Cab 10
Exhibit M - Injuries From Falling Objects 10
Exhibit N - Injuries From Water Coolers 10
Exhibit 0 - Injuries From Trips on Obstructions in Cab or Nose 1.0
Exhibit P - Injuries From Trap Doors and Openings
in Cab Floors 10
Exhibit Q - Injuries From Cab Heaters 11
Exhibit R - Injuries From Slips and Falls on Cab Floors and Steps and Nose Compartment 11
Exhibit S - Injuries Within Cab Resulting From BrakeAnd Brake Equipment Defects 11
Exhibit T - Fumes, Smoke and Gas in Cab 11
Exhibit U - Eye Injuries 12

EXHIBITS

On June 9, 1971, an informal conference was held in the offices of the Bureau of Railroad Safety, Federal Railroad Administration, with representatives of certain railroads, railway labor organizations and associations, locomotive builders and government agencies to discuss various safety aspects of locomotive control compartments. As a result of this meeting, the Bureau of Railroad Safety established the Locomotive Cab Committee for the purpose of continuing the joint efforts of the conference toward improving locomotive safety.

Central Technology, Inc., under the direction and guidance of the Committee, was assigned the task of performing a comprehensive review and analysis of available locomotive cab accident statistics, and preparing a summary report identifying and categorizing the major hazards in locomotive accidents. Specifically, the terms of reference for this assignment were as follows:
"Collect and review available data on cab accidents including the following:

Annual Reports of the Section of Locomotive Inspection, 1961 through 1965.

Accident Report Bulletins, 1961 to present.
National Transportation Safety Board Reports, 1967 to present.
Annual Statistical Summaries, 1961 to present.
Locomotive Inspection Reports, 1961 to present (if applicable).
Identify and extract data relative to locomotive cab accidents and categorize data by accident causes. Prepare a summary report identifying the major hazards in locomotive cabs."

Data contained in this summary report were actually collected and reviewed from the following sources:

1. The published reports from 1961 to present of investigations of railroad accidents by the Bureau of Railroad Safety and the National Transportation Safety Board.

Approximately 300 Accident Investigation Reports were reviewed.
2. Additional data relating to these accidents in the file jackets of the Accident Investigation Branch (Mr. W. McCarthy) of the Office of Railroad Safety.

Numerous jackets were pulled and reviewed. It might be noted that the material in these jackets will be useful in further analysis of accidents reported in this study by the Committee when considering the various elements of cab redesign.
3. The Annual Reports of the Section of Locomotive Inspection (1961 through 1965).
4. T-forms of similar accidents from 1965 to the present.

Here a conment on the T-forms is deemed appropriate and pertinent. To use these forms for the purpose suggested here was practically an impossible task. To use a print out of these forms relating to these cab accidents would only supply the numerical statistics (as shown on Exhibit G) and these are not classified in the same detail or definition to compare with information drawn from the Annual Reports. For example, there is no additional detail that might be pertinent to the injury. However, and probably more serious, is the ever present possibility of erroneous coding of the occurrences by persons not always familiar with happenings on the railroad.
5. The Annual Statistical Summaries from 1961 through 1970 were used in preparing Exhibit A.
6. Documented sources from the following railroads for supplementary information on cab accidents:

Southern Pacific Transportation Company
Burlington Northern Railroad
Louisville and Nashville Railroad Company Southern Railway Company

The raillroad documents included telegraphic reports of accidents, T-forms and files on specific hazards in locomotive cabs. These documents include historical summaries and investigations of the causes of accidents.

Eight days were spent on these railroads, during which time some thousands of such reports were perused for data that could be useful in this report.

This report covers a tabulation of 858 accident cases in cabs of locomotives from 1961 to present, involving a total of 229 fatalities and 1260 injuries.

The study divides itself naturally into two parts, the first of which deals with train accidents comprising collisions, derailments and highway crossing accidents of major type with heavy truck-trailers and other heavy equipment. The second concerns itself with the environment in the cab of locomotives involved with injuries.

Exhibits A through F cover the first portion. Exhibit A tabulates certain statictics of train accidents taken from the FRA Accident Bulletins, Nos. 130 - 139, from 1961 through 1970. Exhibit B tabulates 71 head-end collisions; Exhibit C, 85 rear-end collisions; Exhibit D, 27 derailment/side collision combinations; Exhibit E, 39 derailments; and Exhibit F, 60 train-truck collisions.

Exhibits G through U cover the second or environmental part of this study, and include injury cases from the following categories:

> Exhibit H - Hard couplings, rough track and slack action Exhibit I - Cab doors and latches Exhibit J - Cab seats, arms and back rests Exhibit K - Cab windows Exhibit I - Striking appurtenances in the cab Exhibit M - Falling objects Exhibit N - Water coolers Exhibit 0 - Trips on obstructions in the cab or nose Exhibit P - Trap doors and openings in the cab floor Exhibit Q - Cab heaters Exhibit R - Slips and falls on cab floors and steps and nose compartment Exhibit S - Injuries within the cab resulting from brake and brake equipment defects Exhibit T - Fumes, smoke and gases in the cab Exhibit U - Eye injuries In view of the Locomotive Control Compartment Committee's com- order.

CONCLUSIONS

The severity and nature of the accidents in the first part of this report point to the need of designing greater elemental safety in strength and location of the control compartment in locomotive cabs. The second portion of this report emphasizes the necessity of providing
more "livable" environmental conditions for the cab interior and elimination of obvious safety hazards. All the situations reviewed need a more careful consideration and more research into the possible location of the interior appurtenances. The "rough island" of the control stand is just one example where further research is indicated to improve the cab interior condition.

The causes of the major accidents have not been included to establish culpability or excuse. It is not known to what extent the "lesser" cab environmental hazards may have influenced the locomotive operator's senses of perception, alertness, and response to the conditions that ultimately involved him and the train in the accidents noted. These causes need to be studied, not as mere occurrences, but so as to determine to what extent the physiological and psychological processes of the locomotive cab occupants have been influenced by the actual cab environment. An in-depth research with a locomotive control compartment simulator can accomplish much and is necessary for consideration of cab redesign that will provide the safety sought.

What is needed in an over-all study of locomotive design to obtain the proper layout of the control compartment is not a "patch up" job of rebuild, but a carefully researched redesign.

The wide range of safety problems evidenced by the data collected strongly indicates that a complete design approach to the entire cab environment is necessary. Conclusions based upon this study are listed below:

1. Design against vulnerability of control compartment.
2. Design cab interior so as to eliminate projection of appurtenances.
3. Design cab interior against danger from possible falling. objects.
4. Relocate water cooler.
5. Design slip resistant floor for cab and nose compartment.

On July 13, 1972, members of the Locomotive Control Compartment Committee met in Montreal, Canada at the invitation of the Canadian National Railways to view their mock-up of a new design of a locomotive cab. Some of the improvements featured were the closed forced air circulating system, greatly increased wall thickness of the front, side and top of the nose compartment, and the improved floorplan of the control and nose compartments. In view of the work done by the Canadian National Railways, the Locomotive Control Compartment Committee is preparing plans to proceed with a series of locomotive impact tests in a continuing effort to improve locomotive safety. It is reconnended that these plans be progressed to actual accomplishment of these tests with all necessary stress and displacement measurements to be recorded. The results of these tests will be necessary for the consideration of any redesign of locomotive control compartments.

EXHIBIT A

The train accident statistics tabulated in Exhibit A present a background for the study involving head-on, rear-end and side collisions, derailments and train-truck accidents. Over the 10 year period there were a total of 381 rear-end, 251 head-on and 92 side collisions. The documents reviewed in detail in this study cover 85 rear-end, 71 head-on and 27 side collisions or about 25% of the total cases. There were a total of 38 derailments reviewed, also.

However, the catastrophic severity of the cases under study is reflected in the fact that they account for 155 of the total 232 fatalities tabulated or about 67%, which would indicate that the base used for this study is broad enough to certify its validity.

Not under consideration, but certainly of more than passing interest, is the increasing trend over the ten year period in the number of train accidents, casualties and the costs of damage of these accidents. The ratio of train accidents to million locomotive and motor train miles also reflects this, having increased from 4.46 in 1961 to 9.65 in 1970. In view of this, the importance of the consideration of the data in this study for the necessary improvements in locomotive cab design and environment takes on added significance.

EXHIBITS B, C, D, E AND F

These exhibits cover the 282 cases reviewed of head-on collisions, rear-end collisions, derailment/side collisions, derailments and train-truck collisions at highway crossings occurring between January 1961 and June 1972. The documents used included the published reports of investigations of these accidents by the appropriate governmental agencies, some of the file jackets of the FRA investigations, and in some cases, the railroad files themselves. The occurrences are identified as to date, location and the railroad involved. Where known, the impact or closing speed is shown and the type of unit involved. The casualties as to type and location are tabulated. A brief statement regarding damage to the units and cause of the accident completes the data. While the statement of damage is not given in explicit detail, data is sufficient to indicate the vulnerability of the position of the cab occupants in these accidents.

EXHIBIT B - HEAD-END COLLISIONS

This type of accident can be designated generally as having the greatest potential for aggregate destructive forces, with the two heavy and virtually solid motive power combinations moving towards
each other, meeting at substantially high closing speeds. The mass of the trains behind the locomotives tends to compound the kinetic energy through the draft gear compressions at impact.

Seventy-one head-end collisions are tabulated, which resulted in 52 fatalities in locomotive cabs, 7 in caboose (or in train, as passenger train) and 4 from alighting off the units.

The severity of destruction of the impacting units is reflected in the fatalities. The closing speed (of speeds that range from 7 to 85 mph) at impact, averages out at 35 mph , and 75% of the fatalities in the control compartments in head-on collisions occurred at speeds above this average. In each of these cases, the leading units were generally destroyed or heavily damaged, with the cab most often crushed, demolished or wiped out. In other cases, such potentially movable appurtenances as seats, control stands, etc., were generally found torn loose and lying on the floor, all potential agents of injury and fatality to the cab occupants. In some cases, there have been instances of over-riding of one unit by another or by cars in the train. Where pictures of these collisions were available for review, it was noted that the collision forces generally tended to direct the units laterally. In some instances, where curves were involved, the diversion was noted to have been directed toward the inside of the curve.

EXHIBIT C- REAR-END COLLISIONS

In rear-end collisions the total destructive forces from the kinetic energy of the trains involved may not attain the magnitude of head-on collisions because in most instances one of the trains involved is standing, the nature or direction of these forces is still devastating, not only to the caboose or cars struck, but also to the impacting locomotive. Here the road-switcher type of unit with the short, low hood presents a particularly vulnerable control compartment, which in many of the cases reviewed had been crushed, demolished or wiped out by the over-riding underframe of the caboose or car struck.

Eighty-five occurrences of rear-end collisions were reviewed in which 84 fatalities occurred. Of the instances where fatalities in the cab occurred, 50% are specifically noted to have had an override of the control compartment by the caboose or car. Of the 36 accidents where fatalities in the cab occurred, 29 involved the destruction, crushing and demolishing of the cab, and in the other cases heavy damage to the units was noted.

This vulnerability of the control compartment points to the need for new design considerations to mitigate this danger to cab occupants in rear-end collisions, especially form the destructive over-riding by the other equipment. Compounding this safety problem is the significant rising trend of rear-end collisions as indicated in Exhibit A.

Here are tabulated 27 instances of accidents where the collision forces are of a glancing direction, generally occurring when a passing train strikes a derailed piece of equipment on adjacent track or cutting into a train on the main line while exiting from a siding (or vice-versa). While the ratio of fatalities to incidents here is less proportionate, nevertheless, these occurrences need to be analyzed and considered in any redesign of the locomotive control compartment.

EXHIBIT E - DERAILMENTS

This tabulation of 39 derailments includes those derailments resulting from trains running at excessive or, in some cases, uncontrolled speeds into restricted curves or turn outs and such cases as trains running into slides, washouts and similar track disturbances.

Obviously, it is not possible to design a cab structure to withstand all manner of destructive force, but, again, an analysis of these accidents also requires consideration in the cab design study.

EXHIBIT F - TRAIN-TRUCK COLIISIONS AT HIGHWAY CROSSINGS

With the ever increasing number and size of highway motor transport truck-trailers combinations, the fatality rate per accident is of special concern. This is particularly true when truck-trailer combinations loaded with flammable contents are involved in collisions. of the 60 cases reviewed, with a total of 50 fatalities, 18 involved trucktrailers loaded with flammables resulting in 42 fatalities. All the "on ground" fatalities were of cab occupants who had been subjected to the flames and had jumped prior to their death. Only in 4 cases were there any crew members surviving as injured casualties.

To afford more protection to the crew members against collision with a truck loaded with flammables, there appears to be a most urgent need for changes in design of the locomotive control compartment. Much study will be required to improve this situation.

EXHIBIT G - SELECTED FROM TRAIN SERVICE ACCIDENTS TAKEN FROM THE STATISTICAL SUMMARIES OF THE FRA ACCIDENT BULIETINS, NOS. 130-139

This exhibit tabulates the casualty statistics from selected causes as indicated by the code numbers, which are defined in the FRA "Rules Governing the Monthly Reports of Railroad Accidents". The causes selected were taken so as to attempt to portray certain environmental conditions in locomotives resulting in casualties. Here it was virtually impossible to match specific hazardous conditions as
gathered from the annual reports or from railroad accident files. Only code Nos. 5l06, 5109 and 5117 were sufficiently definitive to be identifiable with data gathered from the various other sources used. The specific cab environment conditions that involved injury and that could be identified from sources other than these Accident Bulletins are detailed in Exhibits " H " through "U", together with some detail as to the nature of cause of the injury. The latter type of information is not available from either the Accident Bulletins or the tapes of key punched T -forms.

EXHIBIT H - TRAIN ACCIDEANTS - HARD COUPLINGS, ROUGH TRACK AND SLACK ACTION

These accident cases were gathered chiefly from the accident files of the railroads visited, and generally involved more or less minor injuries to the cab occupants as a result of their having come into severe contact with some part or appurtenance of the cab. Identification by date of occurrence and the railroad involved is given, as well as a brief description of the accident, and, where known, the coupling or contact speed is included. In many of the cases, these injuries shown do not classify as reportable injuries as required by FRA regulations.

It is obvious that the cases tabulated are only a fragmentary representation of the total that occur on all the railroads. Only 65 cases resulting in 67 injuries are listed, and practically all have occurred in yard service. The consideration of these accidents is deemed desirable, in view of the increase in the number of yard accidents, as shown in Exhibit A, from 682 in 1961 to 1426 in 1970. Since the injuries shown in Exhibit H have occurred in the cab, they appropriately need to be considered in the study of a redesign of the cab environment.

CAB ENVIRONMENT INVOLVING INJURY EXHIBITS I THROUGH U

These thirteen exhibits list a total of 511 accidents resulting in 520 injuries sustained from coming in contact with various items of cab furniture, fixtures and appurtenances comprising cab environment, including eye injuries, as well as the contamination of the cab air by fumes and gases. Information obtained from the four railroads visited was very useful in augmenting the data from the FRA records. It should be noted that the depth of information secured from the railroads includes many cases that do not classify as reportable injuries as required by FRA regulations.

It must also be noted that the cases listed herein are by no means the total number of such incidents. Lack of time precluded visiting more railroads and obtaining greater depth in data collection. However, there is sufficient data to indicate which conditions existing in cabs need to be considered in the redesign of the cab to improve cab environment.

Here are tabulated 148 cases, involving 148 instances where the cab occupants sustained injury, mostly to fingers from their being closed in cab doors. In some cases, defective equipment was found to be responsible, while employee carelessness heads the list of causes. But whether it be defective equipment or careless placement of hands and fingers in the doorways that results in the accident, and in view of the large number of such incidents, consideration must be given to the improvement of the means of closing door openings in the cabs. Whatever form the redesign of cab doors may take, it is not the only feature to consider. Sealing the door openings adequately against the intrusion of the elements and flammable liquids from collisions with trucks, as well as providing a safe means of entrance and exit, should also be among the design requisites.

Mention here is made of a modification adopted in 1963 by the Southern Pacific Co. consisting of squaring off the end of the sloping handle to close the door instead of letting it slam closed. However, even'with this modification, there still remain close dimensions between a closing door and the door frame.

EXHIBIT J - INJURIES FROM CAB SEATS, ARM AND BACK RESTS

This exhibit tabulates the next largest source of accidents in the cab, l0l, with a like number of injuries. However, in contrast to Exhibit I, practically all these injuries resulted from some defective condition of the cab seat or seat support, arm or back rest. While in most instances this was the result of improper or inadequate repairs, the fact that seats require all too frequent repair attention indicates that a better and safer seat should be designed. Attention should be given in such redesign to securing a seat substantially enough so as to keep it from becoming "projectile" during a collision, as well as providing better security against injury to the occupant during the normal course of his operation of the unit. The proper physical support to the body to prevent undue tiring of the occupant should be the subject of more research.

EXHIBIT K - INTURIES FROM CAB WINDOWS
This exhibit lists two different injury categories, both of which require further attention from designers of control compartments. In the first category, there are 19 cases of injury from cab windows and window mechanism defects. These range from sticking cab windows due to worn runners to window and window panes falling into the cab. All of these are maintenance problems, but the redesign of the cab should incorporate an improved window placement, as well as the consideration of an improved impact resisting glass pane to eliminate the possibility of foreign objects being thrown through the window, of which there are 14 cases listed.

EXHIBIT L - INJURIES FROM STRIKING APPURTENANCES IN CAB

These are not all the cases of such injury but of the 18 cases listed in this category, it would appear difficult, if not impossible to design against all the situations involved in such injuries. However, when the cab of a locomotive is entered, the number of projections and obstacles that exist are so obvious, that even on a standing unit, the occupant must thread his way about. Without going into further detail, there is much room for improvement in the design of the interior of the cab to eliminate the projection of appurtenances from walls and floors to provide a safer environment.

EXHIBIT M - INJURIES FROM FALLIING OBJECTS

The 18 cases here listed are by no means a total of such occurrences. The redesign of the cab should provide space for locating such objects as radios and fire extinguishers and other loose apparatus into appropriate recesses.

EXHIBIT N - INJURIES FROM WATER COOLERS

The 15 cases of injuries from water coolers likewise do not include all such accidents. One third of the injuries listed came from broken water bottles, seven cases came from carrying or lifting the water cooler in the cab, while in one case, the entire water cooler and frame turned over. The water cooler impedes free movement of the cab occupants. The redesign of the cab should incorporate the consideration of a more suitable location for this appurtenance.

EXHIBIT 0 - INJURIES FROM TRIPS ON OBSTRUCTION IN CAB OR NOSE
Again the paucity of cases does not reflect the true number of conditions obtaining in this category. Six of the seven cases occurred on fixed objects in the cab and on the cab floor. These potential sources of injury should be considered in the total cab redesign.

EXHIBIT P - INJURIES FROM TRAP DOORS AND OPENINGS IN CAB FLOOR
It is obvious that accidents such as these are avoidable as, indeed, most of those already reviewed are. However, the small number of these cases again does not indicate the true number of these occurrences. Furthermore, if the cab is to be designed tight against the intrusion of flammables from an outside source, the design should provide for no trap doors in the floor of the cab or nose.

EXHIBIT Q - INJURIES FROM CAB HEATERS

Accidents reported here likewise should not have happened, however, it must be pointed out that a better, more efficient method of heating can be designed into the more ideal cab.

EXHIBIT R - SLIPS AND FALLS ON CAB FLOORS AND STEPS AND NOSE COMPARTMENVIS

In practically all the 32 cases reported here some foreign substance on the floor or steps resulted in the slip and fall. This appears to be a matter of "good housekeeping", but there remains a responsibility to design a floor which is more slip resistant and which can be easily cleaned without excessive cost.

EXHIBIT S - INJURTES WITHIN CAB RESULTING FROM BRAKE AND BRAKE EQUIPMENT DEFECTS

These 26 cases (and, likewise, there are more than reported here) are cited as another area for consideration in the cab environment, similar to those listed in Exhibits H, I and O.

EXHIBIT T - FUMES, SMOKE AND GAS IN CAB

The 30 cases reported here, as well as other similar complaints not reaching this report, very properly belong in a study concerning improved cab environment. The proper maintenance of the engine systems is a vital but partial response to this question, as malfunctions can develop enroute that result in the conditions here reported, and which must be avoided.

EXHIBIT U - EYE INJURIES

Several notes should be made of the 66 cases cited in this exhibit. First, all did not result in injury in the standard definition of the term; second, they are from records of only four railroads; and third, they only cover a span of $2 \frac{1}{2}$ years. The condition of a foreign particle in the eye cannot always be corrected immediately, and the discomfort to the cab occupant can have an adverse effect on the efficiency and effectiveness of the employee's performance for the ensuring period of service on the trip or shift.

OTHER CONDITIONS

Other conditions were noted during this document search, including the effect of noise on cab occupants. While only two cases of extreme pain to the ears were found, the noise problem is known to exist in all units. The locomotive builders have been making an effort to better insulate the cab compartment against noise, but even so, it is admitted that the noise level in the cab reaches 85 decibels with the heater shut off. This environmental condition warrants further improvement.

Other conditions of cab environment that are more intangible but certainly known to affect the cab occupant adversely are vibration, monotony of sound, etc. The study of cab redesign to provide a safer environment for the locomotive operator must include these physiological and psychological studies by appropriate technology, including the use of a simulator where actual locomotive operations can be repeated and duplicated under varying conditions.

The findings contained in this report are fundamentally the responsibility of Central Technology, Inc. (CENTEC). However, they are the result of efforts expended by a number of people, including the initial guidance provided by staff members of the Bureau of Railroad Safety, Federal Railroad Administration.

Gratitude is due to all. However, the author of this report desires to specifically cite the following for their full cooperation and assistance in this investigation:

Dr. William J. Harris, Association of American Railroads
Mr. Frank Danahy, Association of American Railroads
Executive officers of the following four railroads whose gracious reception and aid in this study were invaluable:
Southern Pacific Transportation Company Burlington Northern, Inc. Louisville and Nashville Railroad Company Southern Railway Company
Representatives of locomotive builders

Frank Kurz, Special Consultant Central Technology, Inc. Silver Spring, Maryland

13

This report covers a tabulation of 858 accident cases in cabs of locomotives from 1961 to present, involving a total of 229 fatalities and 1260 injuries.

The study divides itself naturally into two parts, the first of which deals with train accidents comprising collisions, derailments and highway crossing accidents of major type with heavy truck-trailers and other heavy equipment. The second concerns itself with the environment in the cab of locomotives involved with injuries.

Exhibits A through F cover the first portion. Exhibit A tabulates certain statistics of train accidents taken from the FRA Accident Bulletins, Nos. 130-139, from 1961 through 1970。 Exhibit B tabulates 71 head-end collisions; Exhibit C, 85 rear-end collisions; Exhibit D, 27 derailment/side collision combinations; Exhibit E, 39 derailments; and Exhibit F, 60 train-truck collisions.

Exhibits G through U cover the second or environmental part of this study, and include injury cases from the following categories:

Exhibit H - Hard couplings, rough track and slack action
Exhibit I - Cab doors and latches
Exhibit J - Cab seats, arms and back rests
Exhibit K - Cab windows
Exhibit L - Striking appurtenances in the cab
Exhibit M - Falling objects
Exhibit \mathbb{N} - Water coolers
Exhibit 0 - Trips on obstructions in the cab or nose
Exhibit P - Trap doors and openings in the cab floor
Exhibit Q - Cab heaters
Exhibit R - Slips and falls on cab floors and steps and nose compartment
Exhibit S - Injuries within the cab resulting from brake and brake equipment defects
Exhibit T - Fumes, smoke and gases in the cab Exhibit U - Eye injuries

In view of the Locomotive Control Compartment Committee's commitment to a study of the safety of locomotive cabs, this information may well form the basis for the Committee's study of the improvements in cab design. Accordingly, the following observations are deemed in order.

The severity and nature of the accidents in the first part of this report point to the need of designing greater elemental safety in strength and location of the control compartment in locomotive cabs. The second portion of this report emphasizes the necessity of providing more "livable" environmental conditions for the cab interior and elimination of obvious safety hazards. All the situation reviewed need a more
careful consideration, and more research into the possible location of the interior appurtenances. The "rough island" of the control stand is just one example where further research is indicated to improve the cab interior condition.

The causes of the major accidents have not been included to establish culpability or excuse. It is not known to what extent the "lesser" cab environmental hazards may have influenced the locomotive operator's senses of perception, alertness, and response to the conditions that ultimately involved him and the train in the accidents noted. These causes need to be studied, not as mere occurrences, but so as to determine to what extent the physiological and pyschological processes of the locomotive cab occupants have been influenced by the actual cab environment. An in-depth research with a locomotive control compartment simulator can accomplish much and is necessary for consideration of cab redesign that will provide the safety sought.

What is needed in an over-all study of the Control Compartment is not a "patch up" job of rebuild, but a carefully researched redesign.

INTRODUCTION

On October 4, 1972, an informal conference was held in the offices of the Bureau of Railroad Safety, Federal Railroad Administration, with representatives of certain railroads, railway labor organizations and associations, locomotive builders and government agencies to discuss various safety aspects of locomotive control compartments. As a result of this meeting, the Bureau of Railroad Safety established the Locomotive Control Compartment Committee for the purpose of continuing the joint efforts of the conference toward improving locomotive safety.

Central Technology, Inc., under the direction and guidance of the Committee, was assigned the task of performing a comprehensive review and analysis of available locomotive cab accident statistics, and preparing a summary report identifying and categorizing the major hazards in locomotive accidents. Specifically, the terms of reference for this assignment were as follows:
"Collect and review available data on cab accidents including the following:

Annual Reports on the Section of Locomotive Inspection, 1961 through 1965.

Accident Report Bulletins, 1961 to present.
National Transportation Safety Board Reports, 1961 to present.
Annual Statistical Summaries, 1961 to present.
Iocomotive Inspection Reports, 1961 to present (if applicable).
Identify and extract data relative to locomotive cab accidents and categorize data by accident causes. Prepare a summary report identifying the major hazards in locomotive cabs."

Data contained in this summary report were actually collected and reviewed from the following sources:

1. The published reports from 1961 to present of investigations of railroad accidents by the Bureau of Railroad Safety and the National Transportation Safety Board.

Approximately 300 Accident Report Bulletins were reviewed.
2. Additional data relating to these accidents in the file jackets of the Accident Investigation Branch (Mr. W. McCarthy) of the Office of Railroad Safety.

Numerous jackets were pulled and reviewed. It might be noted that the material in these jackets will be useful in further analysis of accidents reported in this study by the Committee when considering the various elements of cab redesign.
3. The Annual Reports on the Section of Locomotive Inspection (1961 through 1965).
4. T forms of similar accidents from 1965 to the present date.

Here a comment on these forms is deemed appropriate and pertinent. To use these forms for the purpose suggested here was practically an impossible task. To use a print out of these forms relating to these cab accidents would only supply the numerical statistics (as shown on Exhibit G) and these are not classified in the same detail or definition to compare with information drawn from the Annual Reports. For example, there is no additional detail that might be pertinent to the injury. However, probably the more serious, is the ever present possibility of erroneous coding of the occurrences by people not always familiar with happenings on the railroad.
5. The Annual Statistical Summaries from 1961 through 1970 were used in preparing Exhibit A.
6. Documented sources from the following railroads visited for securing supplementary information on cab accidents:

Southern Pacific Transportation Company Burlington Northern Railroad Louisville and Nashville Railroad Company Southern Railway Company

The railroad documents included telegraphic reports of accidents, T forms and files on specific hazards in Jocomotive cabs. These documents included historical summaries and investigations of the causes of accidents.

Eight days were spent on these railroads, during which time some thousands of such reports were perused for data that could be useful in this report.

COMMENTS ON EXHIBITS

EXHIBIT A

The train accident statistics tabulated in Exhibit A present a background for the study involving head-on, rear-end and side collisions, derailments and train-truck accidents. Over the 10 year period there were a total of 381 rear-end, 251 head-on and 92 side collisions. The documents reviewed in detail in this study cover 85 rear-end, 71 head-on and 27 side collisions or about 25% of the total cases tabulated. There were a total of 38 derailments reviewed also.

However, the catastrophic severity of the cases under study is reflected in the fact that they account for 155 of the total 232 fatalities tabulated or about 67%, which would indicate that the base used for this study is broad enough to certify its validity.

Not under consideration, but certainly of more than passing interest, is the increasing trend over the ten year period in the number of train accidents, casualties and the costs of damage of these accidents. The ratio of train accidents to million locomotive and motor train miles also reflects this, having increased from 4.46 in 1961 to 9.65 in 1970. In view of this, the importance of the consideration of the data in this study for the necessary improvements in locomotive cab design and environment takes on added significance.

EXHIBITS B, C, D, E AND F

These exhibits cover the 282 cases reviewed of head-on collisions, rear-end collisions, derailment/side collisions, derailments and train-truck collisions at highway crossings occurring between January 1961 and June 1972. The documents used included the published reports of investigations of these accidents by the appropriate governmental agencies, some of the file jackets of the FRA investigations, and in some cases, the railroad files themselves. The occurrences are identified as to date, location and the railroad involved. Where known, the impact or closing speed is shown and the type of unit involved. The casualties as to type and location are tabulated. A brief statement regarding damage to the units and cause of the accident completes the data. While the statement of damage is not given in explicit detail, data is sufficient to indicate the vulnerability of the position of the cab occupants in these accidents.

EXHIBIT B - HEAD-END COLLISIONS

This type of accident can be designated generally as having the greatest potential for aggregate destructive forces, with the two
heavy and virtually solid motive power combinations moving towards each other, meeting at substantially high closing speeds. The mass of the trains behind the locomotives tends to compound the kinetic energy through the draft gear compressions at impact.

Seventy-one head-end collisions are tabulated, which resulted in 52 fatalities in locomotive cabs, 7 in caboose (or in train, as passenger train) and 4 from alighting off the units.

The severity of destruction of the impacting units is reflected in the fatalities. The median closing speed (of speeds that range from 7 to 85 mph) at impact, averages out at 35 mph , and 75% of the fatalities in the control compartments in head-on collisions occurred at speeds above this mediam. In each of these cases, the leading units were generally destroyed or heavily damaged, with the cab most often crushed, demolished or wiped out. In other cases, such potentially movable appurtenances as seats, control stands, etc., were generally found torn loose and lying on the floor, all potential agents of injury and fatality to the cab occupants. In some cases, there have been instances of over-riding of one unit by another or by cars in the train. Where pictures of these collisions were available for review, it was noted that the collision forces generally tended to divert the units laterally. In some instances, where curves were involved, the diversion was noted to have been directed toward the inside of the curve.

EXHIBIT C - REAR-END COLIISIONS

In rear-end collisions the total destructive forces from the kinetic energy of the trains involved may not attain the magnitude of head-on collisions because in most instances one of the trains involved is standing, the nature or direction of these forces is still devastating, not only to the caboose or cars struck, but also to the impacting locomotive. Here the road-switcher type of unit with the short, low hood presents a particularly valnerable control compartment, which in many of the cases reviewed had been crushed, demolished or wiped out by the over-riding underframe of the caboose or car struck.

Eighty-five occurrences of rear-end collisions were reviewed in which 84 fatalities occurred. Of the instances where fatalities in the cab occurred, 50% are specifically noted to have had an override of the control compartment by the caboose or car. Of the 36 accidents where fatalities in the cab occurred, 29 involved the destruction, crushing and demolishing of the cab, and in the other cases heavy damage to the units was noted.

This vulnerability of the control compartment points to the urgent need for new design considerations to mitigate this danger to cab occupants in rear-end collisions, especially from the destructive over-riding by the other equipment. Compounding this urgency is the significant rising trend of rear-end collisions as indicated in Exhibit A.

EXHIBIT D - DERAIIMFNTS/SIDE COLIISIONS

Here are tabulated 27 instances of accidents where the collision forces are of a glancing direction, generally occurring when a passing train strikes a derailed piece of equipment on adjacent track or cutting into a train on the main line while exiting from a siding (or vice-versa). While the ratio of fatalities to incidents here is less proportionate, nevertheless, these occurrences need to be analyzed and considered in any redesign of the locomotive control compartment.

EXHIBIT E - DERAILMENTS

This tabulation of 39 derailments includes those derailments resulting from trains running at excessive or, in some cases, uncontrolled speeds into restricted curves or turn outs and such cases as trains running into slides, washouts and similar track disturbances.

Obviously, it is not possible to design a cab structure to withstand all manner of destructive force, but, again, an analysis of these accidents also requires consideration in the cab design study.

EXIHIBIT F - TRAIN-TRUCK COLLISIONS AT HIGHWAY CROSSINGS

With the ever increasing number and size of highway motor transport truck-trailer combinations, the fatality rate per accident is of special concern. This is particularly true when truck-trailer combinations loaded with flammable contents are involved in collisions. Of the 60 cases reviewed, with a total of 50 fatalities, 18 involved trucktrailers loaded with flammables resulting in 42 fatalities. All the "on ground" fatalities were of cab occupants who had been subjected to the flames and had jumped prior to their death. Only in 4 cases were there any crew members surviving as injured casualties.

To afford more protection to the crew memebers against collision with a truck loaded with flammables, there is a most urgent need for changes in design of the locomotive control compartment. Much study will be required to improve this situation.

EXHIBIT G - SELECTED FROM TRAIN SERVICE ACCIDENTS TAKEN FROM THE STATISTICAL SUMMARIES OF THE FRA ACCIDENT BULIETINS, NOS. 130-139

This exhibit tabulates the casualty statistics from selected causes as indicated by the code numbers, which are defined in the FRA "Rules Governing the Monthly Reports of Railroad Accidents". The causes selected were taken so as to attempt to portray certain environmental conditions in locomotives resulting in casualties. Here it was virtually impossible to match specific hazardous conditions as
gathered from the annual reports or from railroad accident files. Only code Nos. 5106,5109 and 5117 were sufficiently definitive to be identifiable with data gathered from the various other sources used. The specific cab environment conditions that involved injury and that could be identified from sources other than these Accident Bulletins are detailed in Exhibits " H " through " U ", 'together with some detail as to the nature of cause of the injury. The latter type of information is not available from either the Accident Bulletins or the tapes of key punched T forms.

EXHIBIT H - TRADN ACCIDENTS - HARD COUPIINGS, ROUGH TRACK AND SLACK ACTION
These accident cases were gathered chiefly from the accident files of the railroads visited, and generally involved more or less minor injuries to the cab occupants as a result of their having come into severe contact with some part or appurtenance of the cab. Identification by date of occurrence and the railroad involved is given, as well as a brief description of the accident, and, where known, the coupling or contact speed is included. In many of the cases, these injuries shown do not classify as reportable injuries under the FRA standard definition.

It is obvious that the cases tabulated are only a fragmentary representation of the total that occur on all the railroads. Only 65 cases resulting in 67 injuries are listed, and practically all have occurred in yard service. The consideration of these accidents is deemed desirable, in view of the increase in the number of yard accidents, as shown in Exhibit A, from 682 in 1961 to 1426 in 1970. Since the injuries shown in Exhibit H have occurred in the cab, they appropriately need to be considered in the study of a redesign of the cab environment.

CAB ENVIRONMENT INVOLVING INJURY
 EXHIBITS I THROUGH U

These thirteen exhibits list a total of 511 accidents resulting in 520 injuries sustained from coming in contact with various items of cab furniture, fixtures and appurtenances comprising cab environment, including eye injuries, as well as the contamination of the cab air by fumes and gases. Information obtained from the four railroads visited was very useful in augmenting the data from the FRA records. It should be noted that the depth of information secured from the railroads includes many cases that do not classify as reportable injuries as per the FRA definition of the term.

It must also be noted that the cases listed herein are by no means the total number of such incidents. Lack of time precluded visiting more railroads and obtaining greater depth in data collection. However, there is sufficient data to indicate which conditions existing in cabs need to be considered in the redesign of the cab to improve cab environment.

Here are tabulated 148 cases, involving 148 instances where the cab occupants sustained injury, mostly to fingers from their being closed in cab doors. In some cases, defective equipment was found to be responsible, while employee carelessness heads the list of causes. But whether it be defective equipment or careless placement of hands and fingers in the doorways that results in the accident, and in view of the large number of such incidents, consideration must be given to the improvement of the means of closing door openings in the cabs. Whatever form the redesign of cab doors may take, it is not the only feature to consider. Sealing the door openings adequately against the intrusion of the elements and flammable liquids from collisions with trucks, as well as providing a safe means of entrance and exit, should also be among the design requisites.

Mention here is made of a modification adopted in 1963 by the Southern Pacific Co. consisting of squaring off the end of the sloping handle to close the door instead of letting it slam closed. However, even with this modification, there still remain close dimensions between a closing door and the door frame.

EXHIBIT J - INJURIES FROM CAB SEATS, ARM AND BACK RESTS

This exhibit tabulates the next largest source of accidents in the cab, l0l, with a like number of injuries. However, in contrast to Exhibit I, practically all. these injuries resulted from some defective condition of the cab seat or seat support, arm or back rest. While in most instances this was the result of improper or inadequate repairs, the fact that seats require all too frequent repair attention indicates that a better and safer seat should be designed. Attention should be given in such redesign to securing a seat substantially enough so as to keep it from becoming "projectile". during a collision, as well as providing better security against injury to the occupant during the normal course of his operation of the unit. The proper physical support to the body to prevent undue tiring of the occupant should be subject of more research.

EXHIBIT K - INJURIES FROM CAB WINDOWS

This exhibit lists two different injury categories, both of which require further attention from designers of control compartments. In the first catefory, there are 19 cases of injury from cab windows and window mechanism defects. These range from sticking cab windows due to worn runners to window and window panes falling into the cab. All of these are maintenance problems, but the redesign of the cab should incorporate an improved window placement, as well as the consideration of an improved impact resisting glass pane to eliminate the possibility of foreign objects being thrown through the window, of which there are 14 cases listed.

EXHIBIT L - INJURIES FROM STRTKING APPURTENANCES IN CAB

These are not all the cases of such injury but of the 18 cases listed in this category, it would appear difficult, if not impossible, to design against all the situations involved in such injuries. However, when the cab of a locomotive is entered, the number of projections and obstacles that exist are so obvious, that even on a standing unit, the occupant must thread his way about. Without going into further detail, there is much room for improvement in the design of the interior of the cab to eliminate the projection of appurtenances from walls and floors to provide a safer environment.

EXHIBIT M - INJURIES FROM FALLIING OBJECTS

The 18 cases here listed are by no means a total of such occurrences. The redesign of the cab should provide space for locating such objects as radios and fire extinguishers and other loose apparatus into appropriate recesses.

EXHIBIT \mathbb{N} - INJURIES FROM WATER COOLERS

The 15 cases of injuries from water coolers likewise do not include all such accidents. One-third of the injuries listed came from broken water bottles, seven cases came from carrying or lifting the water cooler in the cab, while in one case, the entire water cooler and frame turned over. The water cooler impedes free movement of the cab occupant. The redesign of the cab should incorporate the consideration of a more suitable location for this appurtenance.

EXHIBIT O - INJURIES FROM TRIPS ON OBSTRUCTIONS IN CAB OR NOSE

Again the paucity of cases does not reflect the true number of conditions obtaining in this category. Six of the seven cases occurred on fixed objects in the cab and on the cab floor. These potential sources of injury should be considered in the total cab redesign.

EXHIBIT P - INJURIES FROM TRAP DOORS AND OPENINGS IN CAB FLOOR
It is obvious that accidents such as these are avoidable as, indeed, most of those already reviewed are. However, the small number of these cases again does not indicate the true number of these occurrences. Furthermore, if the cab is to be designed tight against the intrusion of flammables from an outside source, the design should provide for no trap doors in the floor of the cab or nose.

EXHIBIT Q - INJURIES FROM CAB HEATERS

Accidents reported here likewise should not have happened, however, it must be pointed out that a better, more efficient method of heating can be designed into the more ideal cab.

EXHIBIT R - SLIPS AND FALLS ON CAB FLOORS AND STEPS AND NOSE COMPARTMENTS

In practically all the 32 cases reported here some foreign substance on the floor or steps resulted in the slip and fall. This appears to be a matter of "good housekeeping", but there remains a responsibility to design a floor which is more slip resistant and which can be easily cleaned without excessive cost.

EXHIBIT S - INJURIES WITHIN CAB RESULTING FROM BRAKE AND BRAKE EQUIPMENT DEFECTS

These 26 cases (and, likewise, there are more than reported here) are cited as another area for consideration in the cab environment, similar to those listed in Exhibits H, L and 0 .

EXHIBIT T - FUMES, SMOKE AND GAS IN CAB

The 30 cases reported here, as well as other similar complaints not reaching this report, very properly belong in a study concerning improved cab environment. The proper maintenance of the engine systems is a vital but partial response to this question, as malfunctions can develop enroute that result in the conditions here reported, and which must be avoided.

EXHIBIT U - EYE INJURIES

Several notes should be made of the 66 cases cited in this exhibit. First, all did not result in injury in the standard difinitin of the term; second, they are from records of only four railroads; and third, they only cover a span of $2 \frac{1}{2}$ years. The condition of a foreign particle in the eye cannot always be corrected immediately, and the discomfort to the cab occupant can have an adverse effect on the efficiency and effectiveness of the employee's performance for the ensuing period of service on the trip or shift.

Other conditions were noted during this document search, including the effect of noise on cab occupants. While only two cases of extreme pain to the ears were found, the noise problem is known to exist in all units. The locomotive builders have been making an effort to better insulate the cab compartment against noise, but even so, it is admitted that the noise level in the cab reaches 85 decibels with the heater shut off. This environmental condition warrants further improvement.

Other conditions of cab environment that are more intangible but certainly known to affect the cab occupant adversely are vibration, monotony of sound, etc. The study of cab redesign to provide a safer environment for the locomotive operator must include these physiological and psychological.studies by appropriate technology, including the use of a simulator where actual locomotive operations can be repeated and duplicated under varying conditions.

27

 $\stackrel{\substack{2 \\ 7 \\ 7}}{\substack{2 \\ ~}}$会
号
笋㤘 $\stackrel{\underset{\sim}{7}}{\underset{7}{7}}$ $\stackrel{+}{\rightrightarrows}$

 9 | \circ |
| :--- |
| $\stackrel{\circ}{9}$ |
| 9 | 4095

4086 4078 $\stackrel{\text {－1 }}{\substack{9 \\ \rightrightarrows}}$溕 $\begin{aligned} & \\ & \text { RS }=\text { Road Switcher Type Units } \\ & \text { CB }=\text { Car Body Type Units } \\ & \text { SW }=\text { Switcher Units }\end{aligned}$ asooqeo control speed－units destroyed Failure to control train per signal－
CTC out Engineer passed out－RS units does－ Failure to control train per signal Train proceeding against traffic without authority－units Failure to comply with yard rules－
units heavily damaged Failure to comply with signals－
units considerably damaged Failure to secure unattended units－
diesel unit destroyed Yard accident Failure of oral authority by dis－
matcher to work train－CB overrode RS unit
Failure to control train per signal－ lead units heavily damaged

 Failure to control train per signal－
lead CNJ unit telescoped punous $1 \quad 0 \quad 000$

2s00quo 1 Failure to control speed in inter－
locking Failure to control speed in yard Engineer asleep Brakeman away
both lead units destroyed Dispatched Meet Order after train passed－units destroyed
Failure to obey Meet Order Improper use of radio，failure to Failure of oral authority by dis－ a punoris \qquad $\circ \circ$ 0 \qquad 00 oc u － \circ m $\circ \quad 0$ \circ as oo 980 ～ \qquad 0 \qquad \circ～ on \qquad － \pm \circ ～ m

Exhibit B-4

$\begin{aligned} & \text { Case } \\ & \text { No. } \end{aligned}$	Date	Railroad	Location	Type of Units	Closing Speed	$\stackrel{\text { ® }}{\text { ® }}$
72	2-26-72	SP\&UP	Los Angeles Div.	SW	8	0
73	2-19-72	SP	Oregon Div.	RS	?	0
74	9-18-71	Sou	Shelby, NC	RS	10	0
75	7-16-71	Burl-Nor	Deschutes, OR`	RS	53	2
76	6-29-71	Burl-Nor	Guernsey, WY	RS	8	0
77	5-11-71	Burl-Nor	Durham, IA	RS	?	0
78	3-28-71	Burl-Nor	Sheridon, WY	RS	13	2
79	3-26-71	Penn.Cent.	North Manchester, IN	RS	30	3
80	3-1-71	Louis\&Wash	Atlanta, GA	SW	15	0
81	1-30-71	DM\&IR	Duluth, MN	RS	44	1
82	12-22-70	Sou	Russellville, AL	RS	10	0
83	11-3-70	Burl-Nor	Tecumsek, NB	RS	45	2
84	10-23-70	BROO \&MLLW	Phoenix, IL	SW\&RS	25	0
85	10-24-70	SOU	Kings Mtn., KY	RS	35	0
86	9-13-70	IL Cent.	Dongala, IL	RS	25	0
87	10-9-70	Reding \& Cent. RR of	Langhorne, PA NJ	RS	36	2
88	9-23-70	Kan.Cty.Sou.	Zwolle, LA	$C B$	27	2
89	9-8-70	Il Cent. \& Harbor Belt	Riverdale, IL	RS	25	2
90	8-21-70	Penn.Cent.	Ravenna, OH	RS	27	0
91	7-17-70	sou	Booneville, IN	RS	10	0
92	6-1.4-70	Penn.Cent.	Massillon, OH	RS	25	1
93	6-3-70	St.LI \&SF	Oluster, OK	RS	35	4

 Exhibit E-2
Type Units
Units
s

Remarks/Cause
Train struck dirt washout slide -
units badly damaged
Failure to line switch - lead
unit overturned - badly damaged
Train struck rockslide - failure
to control train per signal -
unit heavily damaged
Passenger train struck rockslide -
f units destroyed
Collapse of trestle damaged by
fire - unit destroyed
Washout - units heavily damaged
Poor track on curve - units con-
siderably damaged
Malicious tampering with switch -
units overturned - badly damaged
Train derailed at temporary cross
over at excessive speed - unit
turned over \& cab filled with
mud to 6 ft.
Failure to control train speed -
units destroyed and heavily
damaged
Washout - units turned over -
heavily damaged
Struck roadkslide - units
heavily damaged
Snow packed at road crossing -
lead diesel turned onside -
heavily damaged
Failure to control train speed -
train entered turnout to branch
line at excessive speed - unit over
turned - badly damaged
over bridge - ard and 4th units
derailed \& dropped into river
with fireman \& brakeman
Improper MU connections - train
out of control
Failure to control train speed -
units overturned
snow plow struck cab of diesel RB $=$ Car Body Type
SW $=$ Switcher Units


```
punoxil 0 asooced
``` \(\bigcirc\) 0 \(\bigcirc\) 0 0 00 \(\circ\) \(\qquad\)

\(\qquad\) -

\(\stackrel{9}{6}\)

 \(\stackrel{0}{0}\) 220ヶ
LEO力 \(\stackrel{ }{\substack{\circ}}\) \(\stackrel{ \pm}{8}\) \(\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\stackrel{\rightharpoonup}{2}}\) ूㅡㅆ
 y
í
in
M \(\begin{array}{ll}\text { M } & \\ 0 & \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\)

 Pattiy uotieoot
puno．zi 100 \(\qquad\) 00 \(\circ\) － 0 əsooqeal 0 － － 0 － 0 \(\circ\) m qeol \(\rightarrow 0\)

 \(\omega \quad \circ \quad \stackrel{3}{c}\) \(\stackrel{3}{\square} \underset{\sim}{\sim}\) \(\stackrel{3}{c}\) 온 \(\stackrel{3}{0}\)
 \(\infty\) \(\sim \stackrel{\infty}{\sim}\) \(\stackrel{\infty}{\infty}\)岳获
 \(+\) \(\approx\) \(\underset{\sim}{\infty}\) m \(\neq\) \(\underset{\sim}{\sim}\) \({ }_{-1}^{\infty}\)
\(\qquad\) 00。 0 00 \(\rightarrow\) \(\rightarrow\) \(-\) 00 － 0 \(\circ \quad 0\) \(\circ\) － 00 － ～ ～ 00 \(\circ\) 00 0 \begin{tabular}{l}
\(\begin{array}{l}\text { Type of } \\
\text { Units }\end{array}\) \\
\hline RS
\end{tabular} 옹 \％ 5 2足 \({ }_{2}^{2}\) go B皆 \(\stackrel{\infty}{\sim}\) gis nㅜㄴ －in 8 ल \(\Rightarrow=\stackrel{m}{=}\) －

 41
\begin{tabular}{l}
\(\begin{array}{c}\text { Document } \\
\text { Source }\end{array}\) \\
\hline 3919 \\
3916 \\
3918 \\
3912 \\
\(3904-\mathrm{A}\)
\end{tabular}

Location
Bettendorf, IO
Bigwells, TX
Bakersville, MO
Atherton, IN
Magnolia, MS

60 Cases
Cases, Exhibits B, C, \(D, E \& F\)
282
\(\begin{aligned} \text { TOTAL FATALITIES } & =229 \\ \text { TOTAL TNJURED } & =673\end{aligned}\)
范家

42

Exhibit H-1

\section*{TRAIN ACCIDENTS}

\section*{INJURIES FROM HARD COUPLINGS, ROUGH TRACK AND SLACK ACTION}

Remarks

Engineer thrown forward, cut face.
Engineer thrown from seat.
Engineer fractured cheek bone against window.

Engineer's head struck control panel (7 mph).
Brakeman fell against water cooler (5 mph).
Engineer injured back.
Brakeman thrown against radio.
Engineer fell from Seat, cut over eye on window.

Brakeman thrown off seat against radio.
Engineer injured against control panel.
Cut of cars struck engine (5 mph), engineer fell against wall; conductor knocked down in cab.

Engineer struck face against window frame.
Engineer knocked off seat, car ran against engine (12 mph)

Switchman fell against cooler (4 mph)
Engineer injured back.
Engineer knocked from seat.
Engineer injured back, jolted from seat.
Engineer injured elbow on control stand.
Engineer injured neck (3 mph).
Brakeman struck head on cab door.
Engineer injured, jarred off seat.
Brakeman jumped before engine struck cars (12 mph); fractured leg.
\begin{tabular}{|c|c|c|c|}
\hline Case & Date & Railroad & \\
\hline 23. & 4-15-71 & B.N. & Engineer knocked down when shoved cars into standing cut of cars at 8 mph . \\
\hline 24. & 1-20-71 & SOU. & Unexpected coupling (10 mph), engineer brushed forehead against window. \\
\hline 25. & 1-8-71 & B.N. & Hostler sustained whiplash injury. \\
\hline 26. & 1-4-71 & B. N. & Engineer jarred off seat, injured. \\
\hline 27. & 12-12-70 & B.N. & Engineer struck head on window when 2 cuts of cars were shoved together (10 mph) \\
\hline 28. & 12-18-70 & B.N. & Engineer sustained back injury. \\
\hline 29. & 11-18-70 & B.N. & Engineer injured when forced into back rest of seat. \\
\hline 30. & 9-22-70 & B.N. & Engineer sustained strained back. \\
\hline 31. & 9-14-70 & B.N. & Switchman sustained injury when thrown into seat. \\
\hline 32. & 9-9-70 & B.N. & Engineer sustained strained back. \\
\hline 33. & 9-5-70 & SOU. & Trainman jumped from Engine at 20 mph , thinking collision with cut of cars was occurring, fractured ankle. \\
\hline 34. & 7-16-70 & SOU. & Coupling at 6 mph threw switchman off step. \\
\hline 35. & 5-12-70 & B.N. & Engineer injured when engine struck by car off hump (9 mph). \\
\hline 36. & 4-7-70 & SOU. & Engineer thrown against window (6 mph). \\
\hline 37. & 3-4-70 & SOU. & Engineer rising from seat, fell into mirror and strained back (5 mph). \\
\hline 38. & 2-14-70 & SOU. & Employee knocked off engine deck, fractured leg and pelvis (10-12 mph). \\
\hline 39. & 2-14-70 & L. \& N. & Engineer struck head against window frame. \\
\hline 40. & 1-16-70 & SOU. & Fearing hard coupling, conductor jumped off engine at 10 mph , sustaining back injury. \\
\hline 41. & 7-6-69 & B.N. & Engineer injured hand against control stand. \\
\hline 42. & 4-23-69 & B.N. & Switchman injured against seat edge.
\[
45
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case No. & Date & Railroad & Remarks \\
\hline 43. & 4-1-69 & B.N. & Engineer injured back. \\
\hline 44. & 12-6-68 & B.N. & Engineer injured lip against window. \\
\hline 45. & 9-10-68 & B. N. & Engineer and yardman injured. \\
\hline 46. & 8-22-68 & B. N . & Switchman fell from cab door against hard rail. \\
\hline 47. & 7-6-68 & B.N. & Engineer knocked down when shoved cars against standing cars at 8 mph . \\
\hline 48. & 3-29-68 & L. \& N. & Engineer sustained strained back. \\
\hline 49. & 3-10-68 & L. \& N . & Engineer sustained back injury. \\
\hline 50. & 1-1-68 & B.N. & Engineer injured when knocked off seat. \\
\hline 51. & 6-8-66 & L. \& N. & Engineer sustained back injury. \\
\hline 52. & 4-21-66 & L.\& N. & Engineer sustained back sprain. \\
\hline 53. & 4-20-66 & L. \& N. & Engineer sustained back injury. \\
\hline \multicolumn{4}{|c|}{53 Cases -- 55 Injuries} \\
\hline \multicolumn{4}{|c|}{ROUGH TRACK} \\
\hline 54. & 10-14-71 & SOU. & Engineer rising from seat, fell into throttle stand when engine swayed. \\
\hline 55. & 7-15-71 & L. \& N. & Brakeman injured elbow on window ledge as engine swayed. \\
\hline 56. & 6-19-71 & SOU. & Fireman struck head on column going over Clinch River bridge. \\
\hline 57. & 5-15-71 & SOU. & Conductor bruised back against back of seat when low place in track cause fall against seat. \\
\hline 58. & 6-23-70 & SOU. & Fireman standing, fell against cab door when engine rocked. \\
\hline 59. & 9-20-68 & B.N. & Engineer reached for brake, injured hand when engine rocked. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case No. & Date & Railroad & Remarks \\
\hline 60. & 5-6-66 & PENNA. & Engineer injured on protruding arm rest hinge when engine lurched. \\
\hline \multicolumn{4}{|c|}{6 Cases -- 6 Injuries} \\
\hline \multicolumn{4}{|c|}{SLACK ACTION} \\
\hline 61. & 8-30-71 & L. \& N. & Switchman knocked against front of engine cab. \\
\hline 62. & 5-8-71 & SOU. & Conductor fell against radio stand. \\
\hline 63. & 10-2-70 & SOU & Conductor fell against side of engine cab. \\
\hline 64. & 7-7-70 & SOU. & Trainman fell against report holder in cab. \\
\hline 65. & 1-30-70 & SOU. & Conductor fell from seat in engine. \\
\hline \multicolumn{4}{|c|}{5 Cases -- 5 Injuries} \\
\hline
\end{tabular}

INJURIES FROM CAB DOORS AND IATCHES
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Case } \\
& \text { No. }
\end{aligned}
\] & Date & Railroad & Remarks \\
\hline \multicolumn{4}{|c|}{FROM FRA RECORDS} \\
\hline 1. & 10-8-71 & P.C. & Employee injured account top and middle hinge of cab door broken. \\
\hline 2. & 9-3-71 & L. \& N. & Door closed on employee's hand - lost first joint of finger. \\
\hline 3. & 4-28-70 & P.C. & Engineer injured hand in defective door. \\
\hline 4. & 4-19-70 & T.\& P. & Switchman injured elbow account defective door latch. \\
\hline 5. & 4-1-70 & I.I. & Trainman injured back when fell due to defective door latch. \\
\hline 6. & 12-21-66 & PENNA. & Employee injured account door failed to close securely due to improperly adjusted lock keeper. \\
\hline 7. & 6-15-66 & N.Y.C. & Employee injured wrist account rotary motion of latch handle restricted accumulated dirt and rust. \\
\hline 8. & 12-19-65 & N.Y.C. & Employee injured account door latch handle and assembly separated from door. \\
\hline 9. & 11-28-65 & I.C. & Enployee injured account defective door latch prevented opening of door. \\
\hline 10. & 10-13-65 & N.Y.C. & Employee injured account door latch handle and assembly separated from door. \\
\hline 11. & 8-25-65 & N.Y.C. & Employee injured account defective door latch due to latch assembly missing. \\
\hline 12. & 5-8-65 & B. \& M. & Employee injured account undesired trap door opening due to defective latch apring. \\
\hline 13. & 12-5-64 & E.L. & Employee crushed finger closing nose doordefective hinge and latch. \\
\hline 14. & 11-22-64 & N.Y.C. & Employee fell to ground when cab door lock body failed. \\
\hline 15. & 7-4-62 & T.\& P. & Fmployee injured hand due to defective spring latch on cab door to nose compartment. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 16. & 4-7-62 & E.L. & Employee injured when door latch handle came loose from door. \\
\hline 17. & 10-13-61 & M.K.T. & Employee injured account insufficient clearance around door latch handle. \\
\hline 18. & 8-23-61 & S.P. & Employee injured account cab door latch imoperative. \\
\hline 19. & 8-7-61 & M.K.T. & Employee injured tripping over stick holding door open due to door opening catch missing. \\
\hline 20. & 7-30-61 & C.R.I.\& P. & Employee injured opening cab door that was stuck due to defective door latch assembly. \\
\hline 21. & 7-24-61 & N.Y.C. & Enployee injured when cab door latch handle separated from door. \\
\hline 22. & 10-27-60 & S.P. & Employee injured when cab door opened unexpectedly due to improper cab door latch handle. \\
\hline 23. & 10-19-60 & St.L.\& S.F. & Employee injured when cab door would not remain closed due to broken latch. \\
\hline & RAIILROAD & LES & \\
\hline 24. & 6-9-72 & L. \& N. & Wind blew door closed on employee's hand. \\
\hline 25. & 5-28-72 & L.\& N. & Suction from cooling fans pulled cab to engine room door closed on employee's hand. \\
\hline 26. & 3-13-70 & L. \& N. & Cab door was closed on employee's hand. \\
\hline 27. & 10-10-69 & L. \& N . & Employee had hand caught in door frame when another employee closed door. \\
\hline 28. & 5-28-67 & L. \& N. & Cab door was closed on employee's hand. \\
\hline 29. & 6-15-72 & B.N. & Electric cabinet door in cab came loose, fracturing employee's finger. \\
\hline 30. & 1-25-72 & B.N. & Cab door was closed on employee's hand. \\
\hline 31. & 6-6-71 & B. N. & Wind blew door shut on employee's hand. \\
\hline 32. & 5-5-71 & B.N. & Cab door was closed on employee's hand. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case No. & & & \\
\hline & Date & Railroad & Remarks' \\
\hline 33. & 5-1-71 & B.N. & Cab door was closed on employee's hand. \\
\hline 34. & 4-21-71 & B.N. & Employee injured account nose door hard to open. \\
\hline 35. & 3-2-71 & B.N. & Cab door opened suddenly striking employee's head against louvers. \\
\hline 36. & 1-2-71 & B.N. & While closing cab door employee fell to ground. \\
\hline 37. & 11-7-70 & B. N . & Employee caught finger in door being closed. \\
\hline 38. & 9-25-70 & B.N. & Employee departing from cab, closed door on his finger. \\
\hline 39. & 7-25-70 & B.N. & Cab door was closed on employee's hand. \\
\hline 40. & 6-16-70 & B. N . & (same as above) \\
\hline 41. & 4-2-70 & B.N. & cab door was closed on employee's hand, severing end of finger. \\
\hline 42. & 12-6-68 & C.B.\& Q. & Employee closed nose door on foot. \\
\hline 43. & 9-25-68 & C.B.\& Q. & Wind blew cab door closed on employee's hand. \\
\hline 44. & 3-27-68 & C.B.\& Q. & Employee caught hand in cab door he was closing. \\
\hline 45. & 7-5-72 & SOU. & Wind blew cab door closed on employee's finger. \\
\hline 46. & \(7-2-72\) & SOU. & Employee sustained injured finger when cab door was closed. \\
\hline 47. & 7-2-72 & Sou. & Employee injured when stuck door opened suddenly. \\
\hline 48. & 4-27-72 & SOU. & Employee had fingers injured when door was closed by motion of unit. \\
\hline 49. & 4-9-72 & SOU. & Employee closed door on another employee's hand. \\
\hline 50. & 2-20-72 & SOU. & Employee closed door on own hand. \\
\hline 51. & 2-17-72 & SOU. & Employee caught hand between cab door and engine hood. \\
\hline 52. & 2-17-72 & SOU. & Cab door was closed on employee's hand. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 53. & 2-3-72 & SOU. & Cab door was closed on employee's hand. \\
\hline 54. & 12-24-71 & SOU. & Cab door fell off on employee's foot when being opened. \\
\hline 55. & 12-8-71 & SOU. & Cab door hung on outside latch - when pulled, it closed suddenly on employee's hand. \\
\hline 56. & 12-6-71 & SOU. & Wind blew cab door closed on employee's hand. \\
\hline 57. & 10-21-71 & SOU. & Cab door closed behind employee entering cab striking a following employee in mouth. \\
\hline 58. & 10-10-71 & SOU. & Employee closed door on own hand. \\
\hline 59. & 10-7-71 & SOU. & Employee entering cab was struck in mouth by latch handle as door opened. \\
\hline 60. & 9-17-71 & SOU. & Cab door swung open injuring employee. \\
\hline 61. & 9-4-71 & SOU. & Employee turning latch handle, cut finger on protruding screw. \\
\hline 62. & 8-11-71 & SOU. & Cab door slammed closed on employee's hand. \\
\hline 63. & 7-9-71 & SOU. & Cab door was closed in employee's hand. \\
\hline 64. & 7-5-71 & SOU. & (same as above) \\
\hline 65. & 6-19-71 & SOU. & Cab door was closed on employee's finger. \\
\hline 66. & 6-13-71 & SOU. & (same as above) \\
\hline 67. & 6-2-71 & SOU. & Glass in door shattered when slammed closed, injuring employee's eye. \\
\hline 68. & 5-14-71 & SOU. & Cab door was closed on employee's hand. \\
\hline 69. & 2-3-71 & SOU. & Employee closed door on own hand, amputating finger. \\
\hline 70. & 1-6-71 & SOU. & Employee closed door on own hand. \\
\hline 71. & 1-5-71 & SOU. & Employee closed door on own hand, amputating lst joint of ring finger. \\
\hline 72. & 12-24-70 & SOU. & Employee closed door on own finger. \\
\hline 73. & 11-12-70 & SOU. & Employee closed door on own hand. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case No. & & & \\
\hline & Date & Railroad & Remarks. \\
\hline 74. & 11-4-70 & SOU. & Employee closed door on own hand. \\
\hline 75. & 10-23-70 & SOU. & (same as above) \\
\hline 76. & 10-19-70 & SOU. & Employee following another through door, had door strike him in head. \\
\hline 77. & 10-12-70 & SOU. & Motion of unit closed door on employee's fingers. \\
\hline 78. & 10-11-70 & SOU. & Door from cab to enginer room closed on employee's fingers. \\
\hline 79. & 10-2-70 & SOU. & Cab door swung back and closed on employee's fingers. \\
\hline 80. & 9-30-70 & SOU. & Employee closed door on own hand. \\
\hline 81. & 7-12-70 & SOU. & Employee closed door on own finger. \\
\hline 82. & 7-9-70 & SOU. & Cab door was closed on employee's hand. \\
\hline 83. & 6-25-70 & SOU. & Employee injured elbow on cab door. \\
\hline 84. & 6-24-70 & SOU. & Employee closed door on own finger. \\
\hline 85. & 6-14-70 & SOU. & Wind blew cab door closed on employee's hand. \\
\hline 86. & 6-12-70 & SOU. & Employee closed door on own fingers. \\
\hline 87. & 6-3-70 & SOU. & cab door slammed shut on employee's hand when unit was stopped. \\
\hline 88. & 5-12-70 & SOU. & Employee struck knee on door facing. \\
\hline 89. & 4-14-70 & SOU. & Employee following another through door, door swung back closed on finger. \\
\hline 90. & 3-30-70 & SOU. & Employee fell when cab door that was hard to open, opened suddenly. \\
\hline 91. & 6-30-72 & S.P. & Employee bruised thumb reaching for door latch handle. \\
\hline 92. & 3-10-72 & S.P. & Employee sprained wrist trying to open jammed door. \\
\hline 93. & 3-1-72 & S.P. & Wind slammed door closed on employee's fingers. \\
\hline 94. & 2-28-72 & S.P. & Employee closed door on own hand. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case \(\xrightarrow{\text { No. }}\) & Date & Railroad & Remarks \\
\hline 95. & 11-12-71 & S.P. & Enployee closed door on own finger. \\
\hline 96. & 7-21-71 & S.P. & Cab door was swung closed on employee's finger by braking action. \\
\hline 97. & 11-14-70 & S.P. & Employee pulled door shut on own finger. \\
\hline 98. & 8-3-70 & S.P. & Employee closed cab door on own finger. \\
\hline 99. & 6-20-68 & S.P. & Employee had finger caugth in door when closed. \\
\hline 100. & 6-4-68 & S.P. & Employee had finger injured when engine room pressure caused door to fly open into cab. \\
\hline 101. & 6-7-68 & S.P. & Cab door was closed on employee's thumb when wind caught it. \\
\hline 102. & 5-15-68 & S.P. & Cab door blew open due to defective latch; when wind caught door and closed it again, door closed on employee's finger. \\
\hline 103. & 5-4-68 & S.P. & Cab door was closed on employee's thumb. \\
\hline 104. & 4-17-68 & S.P. & Employee closed door on own finger. \\
\hline 105. & 3-20-68 & S.P. & Employee closed door on own hand. \\
\hline 106. & 1-17-68 & S.P. & Wind caught cab door slamming it closed on employee; jamming elbow. \\
\hline 107. & 12-10-67 & S.P. & Employee closed door to steam generator compartment on own thumb. \\
\hline 108. & 12-13-67 & S.P. & Employee closed engine room to cab door on own finger. \\
\hline 109. & 11-17-67 & S.P. & Cab door was closed on employee's fingers. \\
\hline 110. & 11-5-67 & S.P. & Employee closed door to steam generator compartment on own finger. \\
\hline 111. & 2-26-68 & S.P. & Employee closed door on thumb. \\
\hline 112. & 10-2-67 & S.P. & Employee closed door on hand. \\
\hline 113. & 9-17-67 & S.P. & Employee closed door on hand. \\
\hline 114. & 9-2-67 & S.P. & Employee closed door by catch closing door on hand. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case No. & Date & Railroad & Remarks \\
\hline 115. & 8-21-67 & S.P. & Employee slammed door on own finger. \\
\hline 116. & 7-29-67 & S.P. & Employee's finger caught on door latch and smashed against safety latch. \\
\hline 117. & 5-28-67 & S.P. & Employee caught finger in hinged edge of door. \\
\hline 118. & 5-26-67 & S.P. & Employee caught finger between cab door and door frame. \\
\hline 119. & 4-23-67 & S.P. & Employee closed cab door on another employee's finger. \\
\hline 120. & 4-22-67 & S.P. & Cab door closed on employee's hand. \\
\hline 121. & 3-9-67 & S.P. & Wind blew cab door closed on employee's hand. \\
\hline 122. & 4-7-67 & S.P. & Cab door was closed on employee's hand when coupling was made: \\
\hline 123. & 4-3-67 & S.P. & Employee closed door on finger. \\
\hline 124. & 2-6-67 & S.P. & Cab door opened suddenly striking employee on elbow. \\
\hline 125. & 1-28-67 & S.P. & Cab door closed on employee's finger. \\
\hline 126. & 1-19-67 & S.P. & Employee caught finger between latch and door when closing door. \\
\hline 127. & 1-16-67 & S.P. & Employee closed door without using latch handle, catching finger between door and frame, amputating same at first joint. \\
\hline 128. & 1-15-67 & S.P. & Employee closed nose door on foot. \\
\hline 129. & 6-25-66 & S.P. & Employee closed door on hand at hinged edge of door frame. \\
\hline 130. & 6-18-66 & S.P. & Cab door closed on employee's hand. \\
\hline 131. & 5-25-66 & S.P. & Employee closed cab door on hand. \\
\hline 132. & 5-15-66 & S.P. & Employee closed cab door on hand when hand slipped off latch handle. \\
\hline 133. & 12-1-64 & S.P. & Cab door slammed closed on employee's hand. \\
\hline 134. & 10-22-64 & S.P. & Cab door closed on employee's hand. \\
\hline
\end{tabular}

Case
\begin{tabular}{|c|c|c|c|}
\hline No. & Date & Railroad & Remarks \\
\hline 135. & 9-22-64 & S.P. & Cab door closed on employee's fingers. \\
\hline 136. & 7-23-64 & S.P. & Cab door closed on employee's fingers. \\
\hline 137. & 7-8-64 & S.P. & Cab door slammed on employee's fingers. \\
\hline \multicolumn{4}{|l|}{138.} \\
\hline \multicolumn{4}{|l|}{\[
139 .
\]} \\
\hline \multicolumn{4}{|l|}{241.} \\
\hline \[
\begin{aligned}
& 142 . \\
& 143 .
\end{aligned}
\] & \} 2964 & S.P. & Eleven more cases indicated as having occured in 1964 - with no further details given. \\
\hline \begin{tabular}{l}
144. \\
145.
\end{tabular} & & & \\
\hline 146. & & & \\
\hline \[
147 .
\] & & & \\
\hline
\end{tabular}
136. 7-23-64 S.P.
137. 7-8-64 S.P.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.

Railroad

\section*{Remarks}

Cab door closed on employee's fingers. Cab door closed on employee's fingers. Cab door slammed on employee's fingers.

Eleven more cases indicated as having occured in 1964 - with no further details given.

\section*{INJURIES FROM}

CAB SEATS, ARM AND BACK RESTS
\begin{tabular}{|c|c|c|c|}
\hline Case No. & Date & Railroad & Remarks \\
\hline \multicolumn{4}{|c|}{FROM FRA FILES} \\
\hline 1 & 1-20-72 & C. \& N.W. & Seat was set up on last notch where it could not be locked by pin. When slack ran out, seat came out of pedestal and engineer fell with seat. \\
\hline 2 & 12-26-71 & P-C & Fireman's seat turned over with occupant account Bolt missing that retains cylindrical spring loaded male pedestal inside the support column. \\
\hline 3 & 11-19-71 & \(B \& M\) & Seat cushion frame separated from locking lug account defective weld. \\
\hline 4 & 11-11-71 & P-C & Cab seat back rest adjusting pin broke allowing back rest to drop backward. \\
\hline 5 & 9-15-71 & B \& 0 & When undesired emergency occurred, cab seat pulled out of place and engineer fell backward with seat. Had been inadequately secured by 6 screws, 3 of which pulled out and 3 partly sheared. \\
\hline 6 & 6-2-71 & P - C & Center cab seat not securely fastened to floor, Instead of \(6-\frac{1}{2}\) " bolts, \(3 / 8^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime}\) lag screws were used. Seat had been repositioned in 3 different locations. Seat fell over with occupent. \\
\hline 7 & 3-13-70 & D \& H & Cab seat failure injured fireman. \\
\hline 8 & 2-27-70 & P-C & Cab seat failure injured engineer. \\
\hline 9 & 1-14-70 & C.R.I. \&P. & Cab seat failure injured switch foreman. \\
\hline 10 & 5-13-66 & PA & Defective hardwood base of cab seat failed to hold back rest bracket screws and back rest fell backward. \\
\hline 11 & 1-8-66 & PA & Broken hinge in seat supporting leg caused seat to collapse. \\
\hline 12 & 12-21-65 & TRR St.L. & Failure of both sides of cab seat back rest cuased back rest to fall with occupant \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 13 & 12-11-65 & SOU & Failure of weld caused back rest to separate from seat frame. \\
\hline 14 & 11-7-65 & B \& 0 & Failure of cab seat back rest caused fall. \\
\hline 15 & 9-27-65 & PA & Screws missing from hinged support caused seat to collapse. \\
\hline 16 & 7-25-65 & NYC & Employee was thrown to floor when back rest index pin broke. \\
\hline 17 & 6-24-65 & S.P. & Cab seat broke off due to failure of weld in plate that supports cusshion. \\
\hline 18 & 6-23-65 & \(B \& M\) & Failure of weld at cab seet locking on bottom of cushion frame caused seat to fall with occupant. \\
\hline 19 & 4-9-65 & \(B \& 0\) & Cab seat pedestal broke loose from floor. \\
\hline 20 & 3-17-65 & NYC & Cab seat back rest positioning device failed, and back rest fell backward. \\
\hline 21 & 1-21-65 & \(P\) \& LE & Screws fastening cab seat to floor loose and missing and seat overturned. \\
\hline 22 & 12-21-64 & SOU & Cab seat back rest of faulty design failed. \\
\hline 23 & 12-13-64 & \(B\) \& \(M\) & Failure of cab seat post due to defective weld. \\
\hline 24 & 12-11-64 & NYC & Weld failure of back rest frame caused back rest to fall backward. \\
\hline 25 & 11-21-64 & Gr. Nor. & Cab seat back rest failed. \\
\hline 26 & 11-4-64 & Mo. Pac. & Wood screws fastening cushion to seat base pulled out allowing seat cushion and back rest to fall backward. \\
\hline 27 & 10-11-64 & SOU & Cab seat pulled loose from floor and fell over. \\
\hline 28 & 9-26-64 & PA & Defective seat locking device permitted undesired movement of seat at impact. \\
\hline 29 & 9-10-64 & D. \& R.G. & Cab seat failed account faulty repair of previous defective swivel pin. \\
\hline 30 & 8-13-64 & PA & Defective hinge pivot securing back of cab seat to the wall allowed seat to collapse. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Case No.} & & & \multirow[b]{2}{*}{Remarks} \\
\hline & Date & Railroad & \\
\hline 31 & 7-12-64 & PA & Cab seat back rest came detached from back rest frame due to missing screws. \\
\hline 32 & 7-6-64 & NYC & Weld failure of back rest frame caused back rest to fall backward. \\
\hline 33 & 6-16-64 & Union & Defective seat elevating device became disengaged permitting seat to fall from maximum to minimum height, spring and locking pin missing. \\
\hline 34 & 6-4-64 & Union & Defective seat elevating device became disengaged permitting seat to fall from maximum to minimum height, spring and locking pin missing. \#33 and \#34 are for the same locomotive. \\
\hline 35 & 5-19-64 & PA & Defective securing seat base column to base plate and loose bolts permitted seat to tip backward. \\
\hline 36 & 3-12-64 & PA & Wood screws fastening cab seat pedestal base to floor pulled out permitting seat to overturn. \\
\hline 37 & 2-17-64 & PA & Wood screws fastening hinge of folding leg of seat pulled out causing seat to collapse. \\
\hline 38 & \(2-3-64\) & \(B \& M\) & Wood screws fastening cab seat cushion to seat pulled out permitting seat to overturn. \\
\hline 39 & 12-18-63 & Sou.Pac. & Cab seat broke due to ineffective welding of seat cushion plate to supporting column. \\
\hline 40 & \(11-30-63\) & Wabash & Seat not secured by locking pin, swiveled around by slack action injuring occupant. \\
\hline 41 & 11-14-63 & NYC & Employee suffered injury trying to adjust an improperly assembled seat. \\
\hline 42 & 9-18-63 & Mo.Kans.T & Cab seat cushion and back rest attached to pedestal with wood screws became separated. \\
\hline 43 & 7-1-63 & \(B \& M\) & Cab seat pedestal failed. \\
\hline 44 & 6-28-63 & New Haven & Cab seat failed at seat post. \\
\hline \multirow[t]{2}{*}{45} & \multirow[t]{2}{*}{2-1-63} & \multirow[t]{2}{*}{Wabash} & Cab seat back rest positioning device failed. \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Case} \\
\hline No. & Date & Railroad & Remarks \\
\hline 46 & 1-19-63 & NYC & Cab seat gave way at weld causing failure and injury. \\
\hline 47 & 8-30-62 & NYC & Cab seat collapsed due to defective supporting assembly. \\
\hline 48 & 8-7-62 & NYC & Cab seat back rest failed due to defective swivel pins. \\
\hline 49 & \(7-30-62\) & NYC & Failure of cab seat back rest due to defective swivel pins. \\
\hline 50 & 6-22-62 & NYC & Employee fell to floor due to improperly secured cab seat. \\
\hline 51 & 5-18-62 & C.\& N.W. & Employee fell to floor due to cab seat not secured to pedestal. \\
\hline 52 & 5-13-62 & Union Pac. & Employee fell backward due to cab seat back rest failure. \\
\hline 53 & 4-7-62 & Pitts\&Lake & Cab seat failed due to defective weld. \\
\hline 54 & 3-2-62 & SOU & Cab seat and cushion came separated from pedestal. \\
\hline 55 & 2-25-62 & C. \& N.W. & Cab seat and cushion and back rest came separated from pedestal. \\
\hline 56 & 2-17-62 & NYC & Cab seat back rest broke away from seat and fell to floor. \\
\hline 57 & 1-15-62 & New Haven & Cab seat failed due to missing and defective swivel plate clamps. \\
\hline 58 & 12-18-61 & \(B \& M\) & Cab seat failed due to broken bolt at mounting bracket attaching seat frame to wall. \\
\hline 59 & 12-4-61 & \(B \& M\) & Cab seat back rest dropped down due to loose and missing screws. \\
\hline 60 & 12-1-61 & IL Cent. & Cab seat failed due to defective weld. \\
\hline 61 & 10-21-61 & K.C.S. & Cab seat detached from pedestal bracket and fell to floor. \\
\hline 62 & 9-5-61 & INC & Cab seat failed due to defective adjusting mechanism. \\
\hline
\end{tabular}

59
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Case } \\
& \text { No. }
\end{aligned}
\] & Date & Railroad & Remarks \\
\hline 63 & 8-14-61 & PA & Cab seat back rest came detached due to defective hinge brackets. \\
\hline 64 & 7-23-61 & PA & Caib seat failed due to defective hinge. \\
\hline 65 & 5-17-61 & B \& M & Cab seat failed due to defective weld. \\
\hline 66 & 3-24-61 & MO Pac. & Cab seat back rest fell due to positioning device failing. \\
\hline 67 & 3-22-61 & St.L.-S.F. & Cab seat back rest failed due to improper repairs. \\
\hline 68 & 12-21-60 & Sou. Pac. & Cab seat back rest failed due to adjuestin mechanism failing. \\
\hline 69 & 12-18-60 & MO Pac. & Cab seat came detached from floor due to improper repairs. \\
\hline 70 & 12-16-60 & PA & Cab seat back rest failed due to use of improper screws. \\
\hline 71 & 12-8-60 & NYC & Cab seat failed at weld securing pedestal to base. \\
\hline & FROM RAILROAD & RECORDS & \\
\hline 72 & 3-7-71 & Louis\&Nash & Cab seat collapsed with engineer. \\
\hline 73 & 12-21-70 & " " & Cab seat back rest broke off. \\
\hline 74 & 3-10-70 & " 1 & Cab seat back rest cushion came loose. \\
\hline 75 & 7-31-67 & " " & Cab seat back rest fell of from seat. \\
\hline 76 & 8-6-71 & Burl.Nor. & Top of seat box collapsed to bottom. \\
\hline 77 & 8-20-70 & " " & Cab seat adjusting pin removed and seat fell. \\
\hline 78 & 1-9-70 & " " & Cab seat fell down. \\
\hline 79 & 5-14-72 & SOU & Employee injured adjusting cab seat. \\
\hline 80 & 12-6-71 & " & Employee injured reversing seat position. \\
\hline 81 & 10-24-71 & " & Employee injured adjusting cab seat. \\
\hline 82 & 8-31-71 & " & Employee injured relocating cab seat. \\
\hline \multicolumn{4}{|c|}{\[
60
\]} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case No. & Date & Railroad & Remarks \\
\hline 83 & 6-11-71 & sou & Employee injured on cab seat. \\
\hline 84 & 4-2-71 & SOU & Cab seat back rest failed, folding backward. \\
\hline 85 & 10-23-70 & " & Employee injured sitting down on back rest folded down on seat. \\
\hline 86 & 9-15-70 & " & Cab seat back rest fell back due to defective pin. \\
\hline 87 & 5-2-70 & " & Employee injured on cab seat. \\
\hline 88 & 6-20-71 & Sou. Pac. & Cab seat broke where previously welded to pedestal due to poor weld penetration. \\
\hline 89 & 7-23-70 & " " & Cab seat pulled loose from seat frame. \\
\hline 90 & 12-3-68 & " & Cab seat broke loose at weld. \\
\hline 91 & 11-30-68 & " " & Cab seat slid past stop and fell out of bracket onto floor. \\
\hline 92 & 6-10-66 & " " & Cab seat fell back due to anchor bolts coming out. \\
\hline 93 & 8-7-63 & " & Employee injured on cab seat. \\
\hline 94 & 3-31-62 & " " & Employee injured adjusting cab seat. \\
\hline 95 & 2-19-62 & " " & Cab seat adjustment device permitted seat to drop suddenly. \\
\hline 96 & 1-1-62 & " & Cab seat slipped down. \\
\hline 97 & 9-5-61 & " " & Cab seat collapsed. \\
\hline 98 & 3-13-61 & " " & Cab seat broke and arm rest injured employee. \\
\hline 99 & 10-5-60 & " " & Cab seat came out of stand and fell backward. \\
\hline 100 & 2-26-60 & " " & Cab seat dropped suddenly due to failure of adjusting device. \\
\hline 101 & 9-5-68 & Chi.Burl.\& Quincy & Employee injured on seat edge. \\
\hline
\end{tabular}

INJURIES FROM CAB WIVDOWS
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Case } \\
& \text { No. }
\end{aligned}
\] & Date & Railroad & Remarks \\
\hline \multicolumn{4}{|c|}{WINDOW AND MECHANISM DEFECTS} \\
\hline 1 & 3-13-72 & SOU & Enployee injured trying to open cab window when stuck window suddenly released. \\
\hline 2 & 3-1-72 & MO Pac. & Sliding cab window wear plates in slide worn, window hard to open. \\
\hline 3 & 12-8-71 & SOU & Brakeman injured trying to open stuck cab window. \\
\hline 4 & 9-17-71 & SOU & Conductor injured when window fell out of runway in cab. \\
\hline 5 & 6-13-71 & Penn-Cent. & Sliding cab window fell out of runway. \\
\hline 6 & 2-1-71 & SOU & Brakeman injured finger trying to open stuck cab window. \\
\hline 7 & 9-21-70 & SOU & Conductor injured hand opening cab window. \\
\hline 8 & 7-22-70 & Burl.Nor. & Engineer injured elbow on window frame edge. \\
\hline 9 & 10-30-69 & Louis\&Nash & Engineer injured finger when caught while opening cab window. \\
\hline 10 & 9-8-65 & PA & Cab sliding window and frame fell out due to broken and missing screws. \\
\hline 11 & 8-11-65 & Spot.Port \& Sea. & Cab sliding window and frame fell out due to deteriorated condition. \\
\hline 12 & 12-17-64 & PA. & Cab sliding window fell out due to failure of bolts securing channel. \\
\hline 13 & 11-10-64 & PA & Cab sliding window fell out due to failure of bolts securing top runner. \\
\hline 14 & 8-26-63 & C.\& N.W. & Failure of cab window sill arm rest brackets caused employee to fall out of cab. \\
\hline 15 & 8-9-63 & B \& M & Cab sliding window fell out due to defective window guides. \\
\hline 16 & 9-17-62 & PA & Front cab window fell from wall due to deteriorated molding. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Case } \\
& \text { No. }
\end{aligned}
\] & Date & Railroad & Remarks \\
\hline 17 & 9-13-62 & NYC & Employee injured trying to close window due to bent and rusty channels. \\
\hline 18 & 2-3-62 & MO Pac. & Rear cab door window pane fell out of door due to improperly fit \& applied. \\
\hline 19 & 1-19-61 & St.L.\&S.F. & Employee injured on defective cab window operating mechanism. \\
\hline \multicolumn{4}{|c|}{19 Cases -- 19 Injuries} \\
\hline \multicolumn{4}{|c|}{BROKEN WIINDOWS} \\
\hline 1 & 5-17-72 & Sou. Pac. & Rock thrown up and through window due to tie wedged in track. \\
\hline 2 & 2-29-72 & " & Rock thrown through cab window - vandalism. \\
\hline 3 & 2-22-72 & " " & Rock thrown through cab window - vandalism. \\
\hline 4 & 1-21-72 & " " & Rock thrown through cab windshield vandalism. \\
\hline 5 & 10-29-71 & SOU & Rock thrown into cab windshield -vandalism. \\
\hline 6 & 9-21-71 & SOU & Rock thrown through window into cab vandalism. \\
\hline 7 & 9-12-71 & SOU & Rock thrown through window into cab vandalism. \\
\hline 8 & 9-8-71 & SOU & Rock thrown through window into cab vandalism. \\
\hline 9 & 7-7-71 & Burl.Nor. & Rock thrown through window into cab vandalism. \\
\hline 10 & 5-14-71 & SOU & Rock thrown through window into cab vandalism. \\
\hline 11 & 10-8-70 & SOU & Rock thrown through window into cab vandalism. \\
\hline 12 & 10-2-70 & SOU & Rock thrown through window into cab vandalism. \\
\hline
\end{tabular}
\begin{tabular}{llll}
\begin{tabular}{lll}
\begin{tabular}{l}
Case \\
No.
\end{tabular} & Date & Railroad \\
13 & 9-7-70 & SOU
\end{tabular} & \begin{tabular}{l}
Remarks. \\
Rock thrown through window into cab - \\
vandalism.
\end{tabular} \\
14 & \(12-22-68\) & C.B.\&Q. & \begin{tabular}{l}
Train hit snow drift at \(50 \mathrm{mph}-\) \\
front window in cab broken.
\end{tabular} \\
14 Cases -- 14 Injuries &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case No. & Date & Railroad & Remarks \\
\hline 1 & 6-7-72 & SOU & Engineer adjusting sun visor- hand struck window, cut thumb \\
\hline 2 & \(1-30-72\) & E.L. & Fireman hurt back going through small toilet compartment door. \\
\hline 3 & 10-10-71 & SOU & Engineer bruised ledt ankle when struck it on dead man pedal. \\
\hline 4 & 10-4-71 & SOU & Trainman carrying radio struck knee on cab step. \\
\hline 5 & 6-5-71 & Burl.Nor. & Switchman struck knee against fire extinguisher. \\
\hline 6 & 10-20-70 & SOU & Engineer injured removing automatic brake handle. \\
\hline 7 & 8-29-70 & SOU & Fireman sprained wrist turning rotair valve. \\
\hline 8 & 8-29-70 & SOU & Trainman injured bumping against train control apparatus. \\
\hline 9 & 8-15-70 & Burl.Nor. & Brakeman struck head on top of door frame. \\
\hline 10 & 7-17-70 & SOU & Employee struck head on train control generator bracket. \\
\hline 11 & 6-5-70 & SOU & Fireman resetting levers, injured hand. \\
\hline 12 & 6-3-70 & SOU & Engineer resetting controls, seal broke, struck hand on control panel. \\
\hline 13 & 5-29-70 & SOU & Trainman jabbed in eye by antenna of portable radio. \\
\hline 14 & 5-12-70 & SOU & Engineer struck hand against train control housing. \\
\hline 15 & 5-13-70 & SOU & Fireman struck hand against control stand. \\
\hline 16 & 4-24-70 & SOU & Engineer struck knee aginst reverse lever. \\
\hline 17 & 4-11-70 & SOU & Engineer struck knee against radio. \\
\hline 18 & 4-9-70 & SOU & Engineer struck hand against control stand. \\
\hline \multicolumn{3}{|r|}{18 Cases -- 18 Injuries} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 1 & 10-1-71 & SOU & Engineer struck by falling fire extinguisher \\
\hline 2 & 6-14-71 & SOU & Engineer struck by falling control panel bac. \\
\hline 3 & 6-12-71 & SOU & Engineer struck by falling fire extinguisher. \\
\hline 49 & 3-21-71 & SOU & Brakeman struck on hand by falling radio. \\
\hline 5 & 8-30-70 & SOU & Engineer struck on hand by falling radio. \\
\hline 6 & 5-23-70 & K.C.S. & Fireman injured when cab awning fell on head. \\
\hline 7 & 3-25-70 & L.\& N. & Engineer struck on foot by falling radio. \\
\hline 8 & 1-5-70 & SOU & Brakeman struck on foot by falling fire extinguisher. \\
\hline 9 & 3-19-66 & PA & Employee struck by falling ceiling panel. \\
\hline 10 & 10-14-65 & M.P. & Employee struck by falling fire extinguisher due to defective securing latch. \\
\hline 11 & 7-10-65 & NYC & Employee struck by falling fire extinguisher that was not secured. \\
\hline 12 & 7-14-64 & C. \& E.L. & Employee struck by falling radio not locked in securely. \\
\hline 13 & 6-12-64 & WAB & Employee struck by falling number plate inadequately latched. \\
\hline 14 & 5-23-64 & B. \& 0 . & Employee struck by falling fire extinguisher. \\
\hline 15 & 6-18-63 & U.P. & Employee struck by falling fire extinguisher due to defective bracket. \\
\hline 16 & 4-19-63 & Ft.W.\& D. & Employee struck by falling air horn. \\
\hline 17 & 4-15-63 & N. P. & Employee struck by falling fuse and light bulb container. \\
\hline 18 & 10-20-62 & NYC & Employee struck by falling fire extinguisher installed improperly. \\
\hline
\end{tabular}

18 Cases -- 18 Injuries
\(\qquad\)

CAB ENVIRONMENTI INVOLVING INJURY
INJURIES FROM WATER COOLERS
\begin{tabular}{|c|c|c|c|}
\hline Case
No. & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 1. & 1-21-72 & \(T \& P\) & Unsecured drinking water bottie fell from cooler, broke and cut brakeman. \\
\hline 2. & 12-22-71 & B.N. & Switchman injured when water bottle on enginer broke. \\
\hline 3. & 11-22-71 & B. N & Fireman injured placing water bottle on cooler when it slipped and broke. \\
\hline 4. & 10-25-71 & SOU & Engineer carrying water cooler from cab slipped and fell, injuring foot. \\
\hline 5. & 10-22-71 & SOU & Engineer carrying water cooler into cab slipped and fell. \\
\hline 6. & 8-22-71 & SOU & Hostler injured carrying water cooler onto the unit slipped and fell. \\
\hline 7. & 8-3-71 & B.N. & Switchman injured when water bottle broke. \\
\hline 8. & 6-16-71 & SOU & Fireman placing water cooler in place in cab strained back. \\
\hline 9. & 11-30-70 & SOU & Employee struck chin on water cooler bracket. \\
\hline 10. & 11-12-70 & SOU & Engineer while turning rotair valve cut hand on water cooler bracket. \\
\hline 11. & 10-10-70 & SOU & Engineer injured trying to place water cooler on engine. \\
\hline 12. & 8-20-70 & SOU & Engineer injured picking up water cooler on engine. \\
\hline 13. & 8-7-70 & SOU & Trainman carrying water cooler on engine slipped and fell. \\
\hline 14. & 6-27-70 & AT \& SF & Engineer cut tendon in arm when glass water bottle broke. \\
\hline 15. & 4-25-64 & M. P. & Water cooler overturned - wood screws securing cooler to cab floor were loose and missing. \\
\hline \multicolumn{4}{|c|}{15 Cases -- 15 Injuries} \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 1. & 4-11-72 & S.P. & Conductor tripped on threshold of rear cab door. \\
\hline 2. & 5-14-71 & B. N . & Engineer tripped on lid of toilet on floor. \\
\hline 3. & 9-14-70 & B. N . & Hostler tripped on hand brake stand in cab. \\
\hline 4. & 8-14-70 & B. N . & Engineer tripped on engineers foot rest. \\
\hline 5. & 2-23-70 & B.N. & Fireman tripped on dead man control pedal. \\
\hline 6. & 5-31-62 & N.Y.C. & Employee tripped on defective cab threshold. \\
\hline 7. & 1-8-61 & PENNA. & Employee tripped on insecure plate over hole. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case No. & Date & Railroad & Remar \\
\hline 1. & 12-21-71 & B.N. & Brakeman used paking hook to open trap door - hook slipped and door fell on foot. \\
\hline 2. & 9-17-71 & P.C. & Employee opening trap door - door slipped and struck foot. \\
\hline 3. & 6-9-70 & SOU & Employee caught finger between trap door and water cooler bracket. \\
\hline 4. & 5-8-70 & B.N. & Employee stepped into opening when trap door had been left open. \\
\hline 5. & 1-2-70 & B.N. & Employee fell into opening when trap door had been removed. \\
\hline 6. & 6-18-65 & C.R.I. \& P. & Employee fell into opening when trap door had failed. \\
\hline 7. & 2-15-65 & S.P. & Employee struck by unfastened trap door that fell. \\
\hline 8. & 8-15-62 & C. \& N.W. & Employee struck by unfastened trap door that fell. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 1. & \(5-31-72\) & SOU. & Engineer injured hand on cab heater valve. \\
\hline 2. & 4-17-72 & MIIW. & Brakeman injured hand sticking fingers into heater fan. \\
\hline 3. & 10-27-70 & SOU. & Brakeman injured hand sticking it through guard to check fan. \\
\hline 4. & 9-21-70 & SOU. & Engineer injured had sticking it into heater to check it. \\
\hline 5. & 1-12-70 & C.R.I.\& P. & Fireman burned from ruptured cab heater. \\
\hline 6. & 1-10-70 & P.C. & Engineer injured hand in heater fan with guard missing. \\
\hline 7. & 1-7-70 & SOU. & Yardman injured hand in heater fan sticking finger in to check it. \\
\hline 8. & 1-26-68 & S.P. & Fireman injured hand in heater fan sticking finger in to check it. \\
\hline 9. & 11-7-60 & S.A.I. & Employee injured hand when finger was caught in heater fan that was not properly guarded. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case No. & Date & Railroad & Remarks \\
\hline 1. & 5-10-72 & S.P. & Engineer climbing up from nose compartment into cab with shoes wet from wet floor, slipped on step into cab. \\
\hline 2. & 1-15-72 & L.\& N. & Engineer exiting from cab missed step. \\
\hline 3. & 8-27-71 & SOU. & Brakeman walking out cab door slipped account oil on shoes and floor. \\
\hline 4. & 8-22-71 & Sou. & Engineer slipped on step from cab to engine room. \\
\hline 5. & 7-11-71 & B. N . & Employee slipped on oil on floor in nose compartment. \\
\hline 6. & 6-2-71 & SOU. & Employee slipped on step from cab to engine room. \\
\hline 7. & 5-20-71 & SOU. & Engineer unlocking cab door lost footing and fell from top cab step. \\
\hline 8. & 5-19-71 & Sou. & Engineer slipped on fusee on cab floor. \\
\hline 9. & 5-15-71 & sou. & Engineer slipped on oil on cab floor. \\
\hline 10. & 4-25-71 & SOU. & Fireman slipped stepping to cab door. \\
\hline 11. & 3-10-71 & SOU. & Conductor entering engine cab slipped and fell when opening door. \\
\hline 12. & 12-21-70 & E.I. & Engineer descending from cab to nose compartment fell account access loader. out of place and lying on floor. \\
\hline \[
\begin{aligned}
& 13 . \\
& 13 .
\end{aligned}
\] & 10-26-70 & SOU. & Engineer slipped on fusee on cab floor and fell. \\
\hline 14. & 10-5-70 & sou. & Fireman slipped on chain lying loose on nose compartment floor. \\
\hline 15. & 8-21-70 & sou. & Employee slipped on step from cab to engine room. \\
\hline 16. & 3-28-70 & A.T.\& S.F. & Brakeman slipped on defective cab step. \\
\hline 17. & 8-7-69 & B.N. & Engineer slipped on cab floor and fell. \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 18. & 12-28-68 & B.N. & Fireman slipped on step from cab to engine room. \\
\hline 19. & 11-22-68 & B. N . & Engineer fell descending from cab to nose compartment. \\
\hline 20. & 9-26-66 & I. \& N & Engineer slipped on ice on cab floor. \\
\hline 21. & 6-10-65 & N.Y.C. & Brakeman slipped and fell leaving cab account oil on shoes. \\
\hline 22. & 11-14-64 & A.T.\& S.F. & Employee slipped on oil on cab floor that had been tracked in. \\
\hline 23. & 10-27-64 & E.I. & Employee slipped on oil on step leaving cab account grease on step. \\
\hline 24. & 10-16-64 & N. H. & Employee slipped when leaving cab falling to ground account oil on shoes from oily walkways. \\
\hline 25. & 9-17-64 & PENNA. & Enployee slipped on oil on cab floor from ruptured tube of oil guage. \\
\hline 26. & 4-8-64 & N.Y.C. & Employee slipped on oil on wooden cab floor. \\
\hline 27. & 10-18-63 & WAB. & Employee slipped on water on cab floor. from leaking water cooler. \\
\hline 28. & 6-19-63 & L. \& N. & Employee slipped when opening cab to engine room door. \\
\hline 29. & 6-3-63 & B. \& 0 . & Employee slipped on wet cab floor due to improper maintenance of door and window stripping. \\
\hline 30. & 11-18-61 & U.P. & Employee slipped on ice on cab floor. \\
\hline 31. & 8-15-61 & M.K.T. & Employee slipped on oil on cab floor. \\
\hline 32. & 11-28-60 & M.K.T. & Employee slipped on water on cab to engine room step. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & Date & Railroad & Remarks \\
\hline 2. & 6-21-66 & E.L. & Undesired emergency due to parting of air hose, loco to car - worn hose head. \\
\hline 2. & 5-9-66 & E.L. & Undesired emergency due to parting of air hose, loco to car - worn hose head. \\
\hline 3. & 3-23-66 & N.Y.C. & Undesired emergency due to hard working automatic brake valve. \\
\hline 4. & 1-30-66 & E.L. & Hard working automatic brake valve caused severe back strain to engineer. \\
\hline 5. & 1-18-66 & B.R. of Chi. & Defective locomotive air brake caused hard coupling. \\
\hline 6. & 12-7-65 & N.Y.C. & Inoperative brakes due to blown fuse in master controller caused colliion. \\
\hline 7. & 12-3-65 & PEINIA. & Undesired emergency due to grounds in control brake circuit. \\
\hline 8. & 10-25-65 & READ. & Undesired emergency due to defective sanding switch causing wheel slips. \\
\hline 9. & 5-28-65 & N.Y.C. & Train surged forward due to failure of exciter generator. \\
\hline 10. & 3-6-65 & N. \& W. & Inability to apply brakes from control unit due to angle cock being closed between units resulted in collision. \\
\hline 11. & 2-1-65 & PENIVA. & Undesired brake application actuated by defective train control system. \\
\hline 12. & 1-14-65 & N.Y.C. & Undesired emergency due to excessive leak from main reservoir automatic drain valve. \\
\hline 13. & 10-27-64 & PENTIA. & Undesired emergency due to parting of air hose, loco to car - worn hose head. \\
\hline 14. & 9-4-63 & N.Y.C. & Hard slack action due to defective relayair valve. \\
\hline 15. & 6-6-63 & G.N. & Hard coupling due to ruptured relayair valve diaphragm. \\
\hline 16. & 4-I-63 & PENNA. & Undesired emergency due to parting of air hose, loco to car - worn hose head. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Case } \\
& \text { No. } \\
& \hline
\end{aligned}
\] & Date & Railroad & Remarks \\
\hline 17. & 3-21-63 & N.Y.C. & Ineffective locomotive brakes resulted in collision with bumping post. \\
\hline 18. & 2-20-63 & PENNA. & Undesired emergency due to defective vent valve. \\
\hline 19. & 9-17-62 & N.Y.C. & Undesired emergency due to defective rotary valve of automatic brake valve. \\
\hline 20. & 6-6-62 & N.Y.C. & Ineffective brakes on locomotive (brakes cut out) resulted in collision. \\
\hline 21. & 3-1-62 & N.Y.C. & Ineffective brakes on locomotive (brakes cut out) resulted in collision. \\
\hline 22. & 2-14-62 & PENNA & Undesired emergency due to low voltage from defective auto. train stop generator. \\
\hline 23. & 1-26-61 & B. \& 0. & Inoperative locomotive air brakes due to improperly positioned rotair valve. \\
\hline 24. & 12-8-60 & S.P. & Hard working automatic brake valve due to inadequate lubrication. \\
\hline 25. & 7-31-60 & B. \& 0. & Undesired emergency due to defective gasket in brake valve. \\
\hline 26. & \(7-15-60\) & N.Y.C. & Undesired emergency due to low voltage from defective auto. train stop generator. \\
\hline
\end{tabular}

26 Cases -- 30 Injuries

74

\section*{CAB ENVIRONMEINT INVOLVING INJURY}

FUMES, SMOKE AND GAS'IN CAB

\begin{tabular}{|c|c|c|c|}
\hline Case & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 18. & 5-1-64 & N.Y.C. & Inhalation of smoke and fumes in cab from extinguishing fire in elec. cont. cabinet. \\
\hline 19. & 4-13-64 & WAB. & Inhalation of smoke and fumes in cab defective power assemblies. \\
\hline 20. & 1-8-64 & B. \& M. & Inhalationof smoke and fumes in cab defective steam generator. \\
\hline 21. & 11-4-63 & MILW. & Inhalation of smoke and fumes in cab engine exhaust system leaks. \\
\hline 22. & 9-12-63 & MLIN. & Inhalation of smoke and fumes in cab defective air box cover blew off engine. \\
\hline 23. & 1-4-63 & N.H. & Inhalation of smoke and fumes in cab steam heat generator. \\
\hline 24. & 12-10-62 & N. H. & Inhalation of fumes in cab - defective voltage regulator caused batteries to gas. \\
\hline 25. & 12-8-61 & M.K.T. & Inhalation of exhaust fumes in cab from engine. \\
\hline 26. & 11-19-61 & N.Y.C. & Inhalation of exhaust fumes in cab from engine. \\
\hline 27. & 7-17-61 & N.H. & Inhalation of exhaust fumes in cab from engine - defective exhaust manifolds. \\
\hline 28. & 6-15-61 & N.Y.C. & Inhalation of exhaust fumes in cab from engine - defective exhaust manifolds. \\
\hline 29. & 3-7-61 & PENNA. & Inhalation of exhaust fumes in cab from engine \(p\) defective exhaust manifolds. \\
\hline 30. & 8-11-60 & PENNTA. & Inhalation of exhaust fumes in cab from engine. - defective exhaust manifolds. \\
\hline
\end{tabular}

30 Cases -- 35 Injuries
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Case \\
No.
\end{tabular} & Date & Railroad & Remarks \\
\hline 1. & 7-31-72 & L. 80 N. & Fireman - sand in eye from sanders. \\
\hline 2. & 6-30-72 & S.P. & Engineer - sand in eye while looking out window. \\
\hline 3. & 5-31-72 & S.P. & Engineer - metal in eye while looking out window. \\
\hline 4. & 5-4-72 & S.P. & Engineer - sand in eye whiel looking out window. \\
\hline 5. & 4-26-72 & B.N. & Engineer - sand in eye while cleaning cab with air hose. \\
\hline 6. & 4-18-72 & S.P. & Engineer - sand in eye while looking out window. \\
\hline 7. & 4-8-72 & S.P. & (same as above) \\
\hline 8. & \(3-22-72\) & S.P. & (same as above) \\
\hline 9. & \(3-3-72\) & S.P. & (same as above) \\
\hline 10. & \(3-3-72\) & S.P. & Brakeman - (same as above) \\
\hline 11. & 2-23-72 & S.P. & Engineer - (same as above) \\
\hline 12. & 2-21-72 & S.P. & Fireman - (same as above) \\
\hline 13. & 1-27-72 & S.P. & (same as above) \\
\hline 14. & 11-10-71 & SOU. & Engineer - sand flew in eye while operating engine. \\
\hline 15. & 9-5-71 & B.N. & Engineer - sand flew in eye while looking out window. \\
\hline 16. & 8-29-71 & SOU. & Conductor - sand flew in eye while in cab of engine. \\
\hline 17. & 8-17-71 & B.N. & Engineer - sand flew in eye while looking, switching. \\
\hline 18. & 8-15-71 & SOU. & Engineer - sand flew in eye. \\
\hline 19. & 8-15-71 & SOU. & Conductor - piece of steel in eye while in cab of engine. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case
No. & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 20. & 8-10-71 & SOU. & Brakeman - foreign matter in eye while in cab of engine. \\
\hline 21. & 7-18-71 & B.N. & Engineer - foreign matter in eye while operating brakes. \\
\hline 22. & 6-27-71 & SOU. & Brakeman - rust in eye while in cab of engine. \\
\hline 23. & 11-26-70 & SOU. & Engineer - foreign matter in eye while operating engine. \\
\hline 24. & 11-25-70 & SoU. & (same as above) \\
\hline 25. & 11-13-70 & SOU. & (same as above) \\
\hline 26. & 11-6-70 & SOU. & (same as above) \\
\hline 27. & 10-19-70 & SOU. & Trainman - foreign matter in eye while riding on engine. \\
\hline 28. & 10-1-70 & SOU. & Fireman - eye hit by foreign object. \\
\hline 29. & 10-1-70 & B.N. & Engineer - foreign matter in eye while looking train over. \\
\hline 30. & 9-27-70 & SOU. & (same as above) \\
\hline 31. & 9-23-70 & B. N . & Engineer - foreign matter in eye while looking when spreading ballast. \\
\hline 32. & 9-16-70 & SOU. & Engineer - foreign matter in eye while performing regular duties. \\
\hline 33. & 9-14-70 & SOU. & (same as above) \\
\hline 34. & 9-9-70 & sou. & Switchman - foreign matter in eye while on light engine. \\
\hline 35. & 9-6-70 & SOU. & Engineer - foreign matter in eye while performing regular duties. \\
\hline 36. & 8-15-70 & SOU. & Engineer - sand blew in eye while operating engine。 \\
\hline 37. & 8-13-70 & SOU & Engineer - foreign particle blew in eye. \\
\hline 38. & 8-12-70 & B.N. & Brakeman - foreign particle blew in eye when brake application made. \\
\hline 39. & 8-10-70 & SOU. & Engineer - foreign particle blew in eye while operating engine. \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{llll}
\begin{tabular}{l}
Case \\
No.
\end{tabular} & Date & Railroad & \begin{tabular}{l}
Remarks
\end{tabular} \\
40. & \(8-10-70\) & SOU. & \begin{tabular}{l}
Engineer - foreign matter in eye when \\
wheel slip light blew out of socket.
\end{tabular} \\
41. & \(8-5-70\) & SOU. & \begin{tabular}{l}
Fireman - rust blew into eyes.
\end{tabular} \\
42. & \(8-4-70\) & SOU. & Conductor - sand blew into eyes.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Case & & & \\
\hline No. & Date & Railroad & Remarks \\
\hline 61. & 5-1-70 & SOU. & Engineer - foreign body blew in eye. \\
\hline 62. & 4-21-70 & B.N. & Engineer - foreign body blew in eye while looking out window. \\
\hline 63. & 4-7-70 & SOU. & Engineer - foreign body blew in eye while looking for signals. \\
\hline 64. & 3-24-70 & SOU. & Engineer - foreign body blew in eye while dumping rock. \\
\hline 65. & 3-16-70 & SOU. & Fhgineer - foreign body blew in eye while moving engine. \\
\hline 66. & 1-23-69 & L. \& N. & Fireman - foreign body blew in eye while looking out window. \\
\hline
\end{tabular}```

